From the *Transactions* of the
Bristol and Gloucestershire Archaeological Society

Prehistoric and Anglo-Saxon Settlements to the rear of Sherborne House, Lechlade: excavations in 1997

by C. Bateman, D. Enright and N. Oakey
2003, Vol. 121, 23-96

© The Society and the Author(s)
Prehistoric and Anglo-Saxon Settlements to the rear of Sherborne House, Lechlade: excavations in 1997

By CLIFFORD BATEMAN, DAWN ENRIGHT and NIALL OAKEY

With contributions by Jane Bircher, Peter Guest, J.L. Heathcote, Lynne Keys, Mark Maltby, Fiona Roe, Chris Stevens, Jane Timby and Keith Wilkinson

Introduction

The archaeological importance of Lechlade and its environs is well known. Consequently when an application for residential development of land to the rear of Sherborne House was submitted in 1996, Cotswold District Council required that a desk-based assessment and field evaluation be undertaken so that the archaeological impact of the proposed scheme could be fully understood. Cotswold Archaeological Trust (CAT; now Cotswold Archaeology) was commissioned to undertake the project, which comprised the excavation of five trenches. All contained dense concentrations of cut features, including pits, postholes, ditches, and gullies, with material of late Bronze-Age, Iron-Age and Anglo-Saxon date (Barber 1996). When planning permission was granted, a condition was attached requiring the archaeological excavation of 0.5 ha in the area proposed for residential development; within the areas designated as parkland or open space preservation in situ of archaeological remains was achieved. The excavation was undertaken by CAT between May and July 1997.

Location and Archaeological Background

Lechlade lies on the north bank of the River Thames on the flat Summertown-Radley terrace gravels (formerly known as Second Terrace gravels). This light, free draining geology has long encouraged settlement and farming, with evidence having been recorded from the earliest prehistoric period up to the present day. Archaeological evidence from the lower First Terrace and floodplain is less prolific, although pastoral activity from the Iron Age onwards has been documented (Boyle et al. 1998).

Aerial photography has identified intensive archaeological activity within the general vicinity of Lechlade. While the environs of Lechlade have become one of the richest and most extensively investigated archaeological landscapes in Gloucestershire (Fig. 1), it remains unclear whether this focus of activity is a true reflection of the archaeological importance of the area or is more representative of the pressures of modern development (such as gravel quarrying and housing) to which archaeology has reacted.

The earliest evidence for human activity in the area consists of a late Acheulian handaxe found in 1938 and now in the British Museum (Wymer 1968, 84). Evidence for Neolithic settlement, predominantly in the form of pits, has been identified at The Loders 100 m south-west of the Sherborne House site (Darvill et al. 1986); at Gassons Road 400 m to the north-west (King 1998,
269–71), and at Roughground Farm 1 km to the north (Allen et al. 1993, 9–13). Cropmarks testify
to the presence of a late Neolithic/early Bronze-Age cursus and hengiform monument 500 m and
400 m respectively north of the excavation (Gloucestershire SMR).

There is plentiful evidence of Bronze-Age settlement, trackways and ring-ditches. The ring-
ditches are known from aerial photographs, and one of a linear group was excavated at Butler’s
Field 325 m to the north (Boyle et al. 1998, 9–13). Two early Bronze-Age burials, probably once
covered by a barrow, were revealed 200 m north of the site during excavations at the Memorial
Hall (Thomas and Holbrook 1998, 282).

Evidence of early Iron-Age settlement, including land divisions and roundhouses, has been
recovered from Butler’s Field and Roughground Farm, while Iron-Age pits and a possible burial
were found at The Loders. Early Iron-Age land boundaries identified during excavations at The
Memorial Hall, Gassons Road, Roughground Farm and Butler’s Field may form part of a coaxial
field system (Boyle et al. 1998, 31–3). Although the ditches also have been detected through aerial
photographs, modern housing and gravel extraction prohibit identification of a clear continuous
link between the varying ditch elements and their interpretation must remain equivocal. Middle

Fig. 1. Archaeological sites around Lechlade: 1 Butler’s Field; 2 The Loders; 3 Gassons Road;
4 Roughground Farm; 5 cursus and hengi-form cropmarks; 6 The Memorial Hall; 7 Great Lemhill
Farm; 8 Butler’s Court; 9 Claydon Pike; 10 Thornhill Farm.
Iron-Age settlements are attested at Claydon Pike and Thornhill Farm (2 km and 3.3 km to the west, respectively). By the late Iron Age both had developed into large-scale pastoral sites.

The area surrounding Lechlade is rich in Romano-British remains, most notably a substantial villa with associated buildings at Roughground Farm (Allen et al. 1993). A trackway from the villa complex to a small farmstead was found during excavations at Butler’s Field (Boyle et al. 1998, 19–20). Romano-British agricultural settlements have also been excavated at Claydon Pike and Thornhill Farm.

A large Anglo-Saxon cemetery containing 217 inhumations and 32 cremations was excavated at Butler’s Field. The size and wealth of the cemetery suggests the presence of a flourishing settlement in Lechlade during the 6th to 7th centuries and it has been suggested that cropmarks visible within the recreation ground immediately north-east of the Sherborne House site may represent Anglo-Saxon sunken-featured buildings (ibid.). Anglo-Saxon pottery has been recovered from The Loders (Darvill et al. 1986, 45–6) and from Great Lemhill Farm 1.4 km to the north-west (Boyle et al. 1998, 5).

By the time of the Domesday Survey of 1086 Lechlade was held by Henry de Ferrers (Morris 1978). In 1210 the lord of the manor was granted the right to hold a market and by 1235 the settlement had acquired borough status (Herbert 1981, 117). Thereafter Lechlade derived some of its prosperity from the wool trade, but was more dependent upon its function as a staging post for goods and passengers at the navigable limit of the Thames and on major road routes. This latter function led to particular prosperity in the 18th century which is redolent in many of the buildings of the town (ibid. 106–21).

The Site

The excavated site was 300 m north-west of the medieval core of Lechlade at 77 m above O.D. (O.S. Nat. Grid SU 21269974) (Figs. 1 and 2). It was bounded by modern housing, recreational parkland, and the gardens of Sherborne House which itself dates from the late 17th or early 18th century (Verey and Brooks 1999, 440). Maps indicate that the garden boundaries of the house, including the eastern limit of the excavation, have remained unchanged since at least 1825. Land use immediately prior to the excavation was orchard undercropped by grass, but was recorded as meadow land on 1876 sale particulars. Before 1996 there was no archaeological investigation of the site.

Excavation Methodology

Topsoil and subsoil were mechanically stripped from the excavation area under archaeological supervision. Selected areas were hand cleaned prior to detailed investigation of specific features. Discrete features such as pits and postholes were at a minimum half-sectioned; nine Iron-Age pits were totally excavated. Linear features were sampled by hand excavation at least once, with further excavations at intersections to provide stratigraphic relationships. All identified Anglo-Saxon structural features were fully excavated. A full written, drawn and photographic record was maintained.
Fig. 2. Location of excavation area.
Fig. 3. Plan of excavated features.
Fig. 4. Period 2: late Bronze-Age to early Iron-Age features.
SITE DEVELOPMENT

The majority of excavated features (Fig. 3) produced little or no datable evidence and consequently phasing often has been difficult. The problems were amplified by the great similarity in the ceramic technology of the Iron-Age and Anglo-Saxon material resulting from the inevitable overlap in the use of local clays and tempering material. In addition, the commonest prehistoric fabric, a fossil-shell and limestone-tempered fabric, was used extensively from the later Bronze Age through to the middle Iron Age, making it difficult to accurately date single, undiagnostic sherds. Furthermore, the density of the archaeological activity has resulted in a considerable degree of redeposition of artefactual material. Little evidence of vertical stratigraphy survived on the site and the evidence provided by the physical relationship of features was often limited by the shallow or truncated nature of the deposits.

Despite these problems the development of the site has been divided into seven periods, beginning with the Neolithic/Bronze Age. Cut features are identified by square brackets, fills or layers by round brackets.

Period 1: Neolithic/Bronze Age

No features can confidently be assigned to this period. Although a number of postholes and shallow scoops or pits contained only flint artefacts, it is probable that they are residual. The recovery of a moderate assemblage of flintwork suggests late Neolithic/early Bronze-Age activity within the immediate vicinity, and one sherd of possible Bronze-Age pottery was retrieved from middle Iron-Age pit [1095].

Period 2: Late Bronze Age — Early Iron Age (Fig. 4)

The earliest structural evidence, based on pottery analysis and the spatial distribution of the features, comprised three roundhouses. Four large subcircular pits and a series of ditches are also assigned to this period. These features were evenly distributed across the site.

Roundhouses (Figs. 4 and 5)
Structure 4, represented by curvilinear gully [494], was partially revealed within the excavation area. It comprised a flat-bottomed ring-groove, 0.24 m wide and 0.23 m deep, although these dimensions were noticeably smaller towards its north-western extent. At the base of the ring-groove a number of stakeholes penetrated the natural gravel to a maximum depth of 0.6 m. It remains undetermined whether the ring-groove is truncated or terminated at its north-western limit, but if the latter interpretation is correct, then a north-easterly oriented entrance may be postulated. Within the interior of the structure a number of postholes were identified (Fig. 3) and, although none can be related to the structure definitively, it is probable that some represent interior repairs or subdivisions. A single sherd of late Bronze-Age/early Iron-Age pottery was recovered from the ring-groove.

Structure 11 was represented by two curvilinear gully sections, [542] and [608], which may represent a penannular drip-gully surviving to a width of 0.4–0.6 m and a depth of 0.25 m. The gully had a projected internal diameter of 12 m and the surviving terminals suggest a west-facing entrance. A single homogeneous silty fill (from which 11 sherds of late Bronze-Age/early Iron-Age pottery were recovered) was encountered in both sections. Four postholes, [548], [1858],
Fig. 5. Structures 4, 11 and 12.
[1860] and [1862], lay close to the inner edge of the gully and may have formed part of a post-ring structure enclosed by the drip-gully. While the postholes may be contemporary with the gully, they also could be associated with an Anglo-Saxon post-built structure (see below, Period 6, PBS 13). Evidence for the relationship between Structures 4 and 11 had been destroyed, but clearly they did not co-exist.

Structure 12, only partially revealed by excavation, was represented by 12 postholes forming part of a circle with a projected internal diameter of 10.6 m. A wider gap between posthole [456] and the southern edge of excavation may represent an entrance aligned ENE. Eleven sherds of late Bronze-Age/early Iron-Age pottery were retrieved from five of the postholes. Four postholes within the circle (Fig. 3) may represent repairs to roof supports or foundations of internal structures. However, it should be noted that these postholes may equally be associated with an Anglo-Saxon sunken-featured building (see below, Period 6, SFB 6).

Pits (Fig. 4)
The four subcircular pits were identified close to the south-eastern limit of the site. The sides of pit [1475], 1.76 m wide and 1.02 m deep, were cut so steeply as to suggest that they were originally retained by some form of lining. The pit contained two fills, the later of which may be the result of slumping into the pit. The homogeneous nature of the primary fill suggests that the pit was deliberately and rapidly backfilled.

Three intercutting pits, [701], [1043] and [1075], lay 7 m west of pit [1475]. The large quantity of artefactual and ecofactual material recovered from their fills suggests a secondary use for rubbish disposal. Of note is bell-shaped pit [701], which measured 1.30 m in diameter and 1.02 m in depth and contained six distinct fills (Fig. 10). Secondary fill (780) contained large quantities of charred spelt wheat and other plant remains.

Ditches
Ditch A was oriented NE–SW, with a 90° westerly return and terminus at its southern limit. The full extent of the feature was not revealed within the confines of the excavation, but an assemblage of late Bronze-Age/early Iron-Age pottery and an antler toggle were recovered.

Ditches B, C and D were aligned N–S and may have been part of a single land division. Ditches C and B were 0.7 m and 0.8 m wide respectively and were both 0.27 m deep. Ditch D was much wider and with ditch C may have defined a 1.3-m wide entrance. Any relationship between the postulated ditch alignment and Structure 11 was truncated by later boundary ditch E (see below, Period 3).

Period 3: Early to Middle Iron Age (Fig. 6)
This period is characterised by a major reorganisation of the landscape, including the construction of two new roundhouses.

Roundhouses (Figs. 6 and 7)
Structure 5 was represented by penannular drip-gully [654] and recut [656]. Both were ‘U’ shaped in profile, defined an area 10.4 m in diameter, and survived to a width of 0.5 m and a depth of 0.4 m. A south-east facing entrance is suggested by the survival of the northern terminal, while four postholes ([275], [658], [660] and [713]) outside the earlier gully, and two postholes ([711] and [715]) cutting both phases of the gully, may represent repairs. The interior of the structure had been truncated by later pitting and consequently only three potentially contemporary postholes could be identified.
Fig. 6. Period 3: Early–Middle Iron-Age features.
Fig. 7. Structures 5 and 10.
Fig. 8. Period 4: Middle Iron-Age features.
Structure 10 was located within the eastern part of the excavation. It comprised penannular gully [789] which had an internal diameter of 11.7 m and survived to a width of 0.6 m and a depth of 0.4 m. The survival of the southern gully terminal indicated a south-east aligned entrance. Three postholes, [785], [822] and [874], are interpreted as repairs to the structure. Little of the interior of the structure had survived subsequent truncation by Anglo-Saxon ditches.

Boundary Ditch
The establishment of boundary ditch E represents a significant change in land organisation. It was oriented approximately NE–SW, extended the full length of the excavation (90 m), and was 1.65 m wide and 0.55 m deep. The relatively clean and homogeneous nature of the fill suggests natural infilling, the small quantity of pottery retrieved resulting from nearby contemporary activity. At the south-western limit of the excavation the ditch divided into two, possibly indicating that it had been recut along its full length. The later establishment of similarly aligned ditch F (see below, Period 4) indicates continuity of this boundary into the middle Iron Age.

Period 4: Middle Iron Age (Fig. 8)
Middle Iron-Age activity is represented by linear ditches, a dense cluster of storage pits, and a pit alignment. No evidence of contemporary structures was revealed, but the data indicate a single phase of activity, with organic development of the main components during prolonged use.

Boundary Ditches
Period 3 boundary ditch E was recut along its full length by ditch F, which then formed the western boundary of an area of storage pits. Ditch F terminated at the southern extent of the site. If [366] represented the southerly continuation of this ditch alignment, then the 2-m wide gap between the respective terminals may be interpreted as an entrance. The ditches were respected by the middle Iron-Age storage pits excavated immediately to the east, whereas pit [1796] impinged slightly upon the presumably redundant Period 3 ditch E.

Pits (Figs. 9–11)
A dense cluster of 69 subcircular pits was uncovered at the south-western limit of the site. A minimum of 50% of each pit was excavated, with six being fully excavated. They ranged in size from 0.9 to 2.7 m in diameter and from 0.45 to 1.5 m in depth (see Table 1 for individual pit dimensions). Several pits had presumed contemporary postholes immediately outside their circumferences, but their function remains undetermined. Some form of marker may be speculated. Little artefactual material was retrieved from individual pits, a typical assemblage comprising three sherds of pottery and five small fragments of bone. However, a large pottery assemblage (in excess of 150 sherds) was retrieved from beehive-shaped pit [1815] (Fig. 10); a semi-articulated horse leg and pelvis came from the respective primary fills of pits [914] (Fig. 11) and [1836]; and a dog skull from the upper fill of pit [185]. A late Iron-Age silver Dobunnic coin was retrieved from the upper fill of pit [450], although its association with a sherd of Romano-British pottery suggests that it may be intrusive.

The density of the pitting suggests a prolonged period of activity, but with only limited intercutting at the level at which the pits survived. The pits respected the alignment of ditch F to the west, and to the east did not extend beyond a line running NE–SW. A similarly oriented linear arrangement of oval pits was revealed 4 m to the north-east (G). In combination, the evidence suggests that the pits respected and formed a significant land boundary.
<table>
<thead>
<tr>
<th>Pit No.</th>
<th>Max. Diam.</th>
<th>Max. Depth</th>
<th>Fills</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>054</td>
<td>1.35 m</td>
<td>0.85 m</td>
<td>055, 056, 057, 058</td>
<td>Slumpage 082</td>
</tr>
<tr>
<td>088</td>
<td>2.10 m</td>
<td>1.20 m</td>
<td>089, 120, 134, 135, 136</td>
<td>Fig. 10</td>
</tr>
<tr>
<td>121</td>
<td>2.30 m</td>
<td>1.04 m</td>
<td>122, 123, 124, 125, 126, 133</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>1.60 m</td>
<td>0.46 m</td>
<td>141</td>
<td>Truncated by SFB 1</td>
</tr>
<tr>
<td>142</td>
<td>1.80 m</td>
<td>0.8 m</td>
<td>143, 1181, 1182</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>1.60 m</td>
<td>1.17 m</td>
<td>145, 1013</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>1.40 m</td>
<td>0.75 m</td>
<td>147</td>
<td>Slumpage 148</td>
</tr>
<tr>
<td>185</td>
<td>1.80 m</td>
<td>1.25 m</td>
<td>186, 187</td>
<td>Dog skull</td>
</tr>
<tr>
<td>208</td>
<td>1.36 m</td>
<td>0.53 m</td>
<td>209</td>
<td>Slumpage 230</td>
</tr>
<tr>
<td>231</td>
<td>1.01 m</td>
<td>0.44 m</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>2.62 m</td>
<td>0.72 m</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>2.02 m</td>
<td>0.85 m</td>
<td>240, 241</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>1.60 m</td>
<td>0.95 m</td>
<td>245, 246, 254</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>1.60 m</td>
<td>0.87 m</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>1.20 m</td>
<td>0.55 m</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>1.60 m</td>
<td>0.90 m</td>
<td>821</td>
<td>Slumpage 451</td>
</tr>
<tr>
<td>462</td>
<td>1.40 m</td>
<td>0.90 m</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>1.11 m</td>
<td>0.70 m</td>
<td>812, 766</td>
<td>Cut by 815 & 914</td>
</tr>
<tr>
<td>815</td>
<td>1.60 m</td>
<td>0.88 m</td>
<td>768, 814, 816</td>
<td></td>
</tr>
<tr>
<td>828</td>
<td>1.70 m</td>
<td>1.20 m</td>
<td>830, 831, 832, 833, 838</td>
<td>Slumpage 829 Fig. 10</td>
</tr>
<tr>
<td>841</td>
<td>1.83 m</td>
<td>1.12 m</td>
<td>842, 843</td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>1.40 m</td>
<td>0.60 m</td>
<td>852</td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>1.20 m</td>
<td>1.00 m</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>855</td>
<td>1.20 m</td>
<td>0.60 m</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>863</td>
<td>0.99 m</td>
<td>0.34 m</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>865</td>
<td>2.06 m</td>
<td>1.02 m</td>
<td>866, 867, 868, 869, 870</td>
<td></td>
</tr>
<tr>
<td>876</td>
<td>1.20 m</td>
<td>0.70 m</td>
<td>877</td>
<td></td>
</tr>
<tr>
<td>878</td>
<td>1.90 m</td>
<td>1.10 m</td>
<td>879, 880, 1186</td>
<td></td>
</tr>
<tr>
<td>892</td>
<td>1.80 m</td>
<td>1.20 m</td>
<td>898, 894, 895, 896, 897</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>1.90 m</td>
<td>1.10 m</td>
<td>903, 904, 905, 906, 907, 908, 909</td>
<td></td>
</tr>
<tr>
<td>914</td>
<td>1.80 m</td>
<td>1.30 m</td>
<td>915, 916, 917</td>
<td>Fig. 11</td>
</tr>
<tr>
<td>918</td>
<td>1.80 m</td>
<td>1.10 m</td>
<td>1018, 1019</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>1.88 m</td>
<td>1.04 m</td>
<td>921, 922, 923</td>
<td>Slumpage 924</td>
</tr>
<tr>
<td>927</td>
<td>1.28 m</td>
<td>0.32 m</td>
<td>928</td>
<td></td>
</tr>
<tr>
<td>931</td>
<td>1.50 m</td>
<td>0.76 m</td>
<td>932, 933</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pit No.</th>
<th>Max. Diam.</th>
<th>Max. Depth</th>
<th>Fills</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>934</td>
<td>1.40 m</td>
<td>0.46 m</td>
<td>935, 936</td>
<td>Slumpage 937</td>
</tr>
<tr>
<td>946</td>
<td>1.40 m</td>
<td>0.75 m</td>
<td>1014</td>
<td>Cut by modern intrusion</td>
</tr>
<tr>
<td>956</td>
<td>1.60 m</td>
<td>1.06 m</td>
<td>957, 958, 959, 960</td>
<td></td>
</tr>
<tr>
<td>961</td>
<td>1.50 m</td>
<td>0.80 m</td>
<td>962</td>
<td>Cut by modern intrusion</td>
</tr>
<tr>
<td>963</td>
<td>1.80 m</td>
<td>1.02 m</td>
<td>1183, 964</td>
<td></td>
</tr>
<tr>
<td>968</td>
<td>1.30 m</td>
<td>0.46 m</td>
<td>969</td>
<td></td>
</tr>
<tr>
<td>983</td>
<td>1.36 m</td>
<td>0.66 m</td>
<td>984</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td>1.20 m</td>
<td>0.70 m</td>
<td>995, 996</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>2.30 m</td>
<td>1.30 m</td>
<td>1005, 1006</td>
<td></td>
</tr>
<tr>
<td>1007</td>
<td>1.50 m</td>
<td>0.65 m</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>1009</td>
<td>2.30 m</td>
<td>1.16 m</td>
<td>1010, 1011, 1012</td>
<td></td>
</tr>
<tr>
<td>1015</td>
<td>1.80 m</td>
<td>1.40 m</td>
<td>1016</td>
<td></td>
</tr>
<tr>
<td>1032</td>
<td>1.05 m</td>
<td>0.50 m</td>
<td>1033, 1059</td>
<td></td>
</tr>
<tr>
<td>1056</td>
<td>1.45 m</td>
<td>0.80 m</td>
<td>1058</td>
<td>Slumpage 1057</td>
</tr>
<tr>
<td>1061</td>
<td>1.10 m</td>
<td>0.65 m</td>
<td>1062</td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>1.24 m</td>
<td>0.98 m</td>
<td>1081, 1082</td>
<td></td>
</tr>
<tr>
<td>1083</td>
<td>1.40 m</td>
<td>0.90 m</td>
<td>1084, 1085</td>
<td></td>
</tr>
<tr>
<td>1086</td>
<td>1.50 m</td>
<td>0.90 m</td>
<td>1087, 1088, 1089</td>
<td></td>
</tr>
<tr>
<td>1095</td>
<td>1.10 m</td>
<td>1.30 m</td>
<td>1096, 1097, 1098, 1099, 1110</td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>0.70 m</td>
<td>0.40 m</td>
<td>1106</td>
<td>Cut by 1107</td>
</tr>
<tr>
<td>1107</td>
<td>1.60 m</td>
<td>0.73 m</td>
<td>1108</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>1.70 m</td>
<td>1.00 m</td>
<td>1112, 1113</td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>1.40 m</td>
<td>0.85 m</td>
<td>1115, 1116</td>
<td></td>
</tr>
<tr>
<td>1121</td>
<td>1.80 m</td>
<td>0.28 m</td>
<td>1122</td>
<td></td>
</tr>
<tr>
<td>1187</td>
<td>1.05 m</td>
<td>0.31 m</td>
<td>1188</td>
<td></td>
</tr>
<tr>
<td>1191</td>
<td>2.20 m</td>
<td>0.90 m</td>
<td>1193</td>
<td>Slumpage 1192</td>
</tr>
<tr>
<td>1226</td>
<td>2.04 m</td>
<td>1.06 m</td>
<td>1227, 1228</td>
<td></td>
</tr>
<tr>
<td>1724</td>
<td>0.95 m</td>
<td>0.28 m</td>
<td>1725</td>
<td>Slumpage 1229</td>
</tr>
<tr>
<td>1794</td>
<td>1.20 m</td>
<td>0.85 m</td>
<td>1795</td>
<td></td>
</tr>
<tr>
<td>1796</td>
<td>1.70 m</td>
<td>0.94 m</td>
<td>1797, 1798, 1799, 1800</td>
<td></td>
</tr>
<tr>
<td>1815</td>
<td>1.80 m</td>
<td>1.38 m</td>
<td>1811, 1812, 1813, 1814</td>
<td>Good environmental data. Fig. 10.</td>
</tr>
<tr>
<td>1832</td>
<td>2.30 m</td>
<td>1.10 m</td>
<td>1833, 1834, 1835</td>
<td></td>
</tr>
<tr>
<td>1836</td>
<td>2.70 m</td>
<td>1.44 m</td>
<td>1837, 1838, 1839</td>
<td></td>
</tr>
<tr>
<td>1850</td>
<td>1.36 m</td>
<td>1.36 m</td>
<td>1850</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The pits.
Fig. 9. Middle Iron-Age pits.

Fig. 10. Pit sections.
Pit alignment G comprised 20 pits, all sub-oval in plan with a rectangular slot at the base, probably representing post settings. The pits were closely spaced, rarely more than 0.75 m apart, with the exception of two possible entranceways at the northern and southern limits of the alignment. Middle Iron-Age and residual sherds of early Iron-Age pottery were retrieved from many of the pits.

Period 5: Late Iron Age and Romano-British
No features can be assigned to this period and the (small) quantity of artefactual material retrieved from subsoil slumping into larger early and middle Iron-Age features (i.e. the storage pits and boundary ditches) suggests limited activity within the general area. Most Romano-British pottery was retrieved from Anglo-Saxon features, mirroring the situation previously recorded at the Butler’s Field cemetery.

Period 6: Anglo-Saxon (Fig. 12)
Anglo-Saxon activity was identified throughout the site and was denser to the north. Six sunken-featured buildings (SFB) and three sub-rectangular post-built structures (PBS) were recorded. Linear ditches possibly representative of land holdings or divisions and a number of pits containing domestic and craft-based debris were also identified.
Sunken-featured Buildings (Figs. 12–15)

SFB 1 (Fig. 14), identified close to the south-western limit of the excavation, was sub-rectangular in plan (4.8 × 3.0 m) and survived to a maximum depth of 0.26 m. The sides sloped steeply towards a flat base. Two postholes ([468] and [474]) were centrally placed on the edge of the shorter sides of the pit, and four stakeholes ([476], [478], [480] and [482]) were noted along the western edge. Posthole [470] revealed within the sunken area may represent a later repair to the structure.

During excavation a tripartite sequence of fills was identified, although it should be noted that this sequence was not identified during later micromorphological study. The sequence consisted of a thin (c. 0.04 m), comparatively humic primary fill (242) on the base of the sunken area and also lapping up the sides; secondary fill (152) comprising relatively clean clays and gravels (c. 0.22 m thick); and a final deposit (154) (c. 0.16 m thick). The artefacts recovered from this and other sunken-featured buildings are presented in Table 2.

Table 2. Distribution of finds from SFBs.

<table>
<thead>
<tr>
<th>SFB</th>
<th>Pottery</th>
<th>Animal Bone</th>
<th>Other finds</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFB1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary fill</td>
<td>4</td>
<td>4</td>
<td>Bone comb</td>
</tr>
<tr>
<td>Secondary fill</td>
<td>24</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>50</td>
<td>290</td>
<td>Bone needle, Fe strip, loomweight, briquetage</td>
</tr>
<tr>
<td>SFB3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>34</td>
<td>80</td>
<td>Stone spindle whorl, loomweight frags., Fe knife, Fe pin, Roman coin</td>
</tr>
<tr>
<td>Tertiary</td>
<td>6</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>SFB6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary fill</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Secondary fill</td>
<td>56</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>SFB7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>14</td>
<td>12</td>
<td>Chalk spindle whorl</td>
</tr>
<tr>
<td>Secondary</td>
<td>5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>23</td>
<td>69</td>
<td>Metal sheet</td>
</tr>
<tr>
<td>SFB8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk fill</td>
<td>98</td>
<td>244</td>
<td>Fe bar, 2 × brick frags., loomweight frags.</td>
</tr>
<tr>
<td>SFB9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>8</td>
<td>60</td>
<td>1 × box tile, Fe knife, Fe nail, loomweight frags.</td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>946</td>
<td></td>
</tr>
</tbody>
</table>
SFB 3 was centrally located within the excavation area. Measuring 5.2 m in length and 3.2 m in width, it survived to a maximum depth of 0.38 m. Three sides sloped steeply to an uneven base, the exception being the north-western end, which sloped gently and evenly, possibly forming a ‘ramp’. Two postholes, [490] and [492], were centrally placed on the edge of the short sides of the pit and at some point in the lifespan of SFB 3 had been replaced by postholes [628] and [526], respectively. Posthole [509] was revealed at the break of slope from the ‘ramp’. Other postholes on the perimeter and immediately outside the structure may represent contemporary structural elements, although the lack of stratigraphic and artefactual evidence coupled with the density of postholes within the immediate vicinity prohibits clear interpretation. Of particular note are postholes [749] and [1378], which lie 0.2 m beyond, and on the same alignment as, original posthole [490] and may represent further repairs to the structure. A similar tripartite sequence of fills to that identified in SFB 1 was recorded. Amongst the artefacts recovered from the feature was a 4th-century Roman coin.

SFB 6 was close to the southern edge of excavation. It was the smallest example, being only 3.7 m long, 2.2 m wide, and 0.2 m deep, with irregularly sloping sides and a flat base. Two shallow postholes, [687] and [689], were centrally placed on the short sides of the structure. The structure contained a thin (c. 0.03 m deep) primary fill (643) and a secondary fill (644). It remains possible that the structure had contained a tripartite sequence of fills similar to that identified within SFBs 1 and 3 and had been truncated.

SFB 7 measured 5 × 3 m and survived to a depth of 0.45 m. It had steeply sloping sides and a flat base. Two postholes, [1028] and [1431], were centrally placed on the short sides of the structure and a posthole was also identified at each corner ([1020], [1024], [1026] and [1034]). A tripartite sequence of fills was evident.

SFB 8 (Fig. 15) lay 4 m west of SFB 3 and cut Anglo-Saxon ditch P. Sub-rectangular in plan, it measured 4.3 m in length and 3.1 m in width and survived to a depth of 0.54 m (the deepest on site). It had steep, near vertical sides, with the exception of the southern long edge which was shelf-like in appearance, and a flat base. Two large postholes, [1130] and [1136] were centrally placed on the short sides of the structure, [1130] representing a replacement of the smaller original posthole [1132]. Unlike all the other SFBs, the structure contained a homogeneous and artefact-rich fill (782), possibly indicative of deliberate backfilling after the building was redundant.

SFB 9 (Fig. 15) was only partially revealed at the north-eastern limit of the excavation. It was at least 3.7 m long and 3.0 m wide, and it survived to a depth of 0.21 m. Posthole [1688] was centrally located on the short side of the structure. SFB 9 contained a thin (c. 0.03 m deep) primary fill (1856) and secondary fill (1603), but it remains undetermined if the structure had previously contained the tripartite sequence of fills identified within SFBs 1, 3 and 7.

Post-Built Structures (Figs. 12 and 16)
While it is tempting to interpret the three structures as buildings, their plans are sufficiently indistinct that the question must be left open. The alternative interpretation would be that the structures formed fenced enclosures.

PBS 13 consisted of a sub-rectangular arrangement of postholes and measured 9.0 by 6.8 m. Its location, partially over backfilled Period 3 and 4 ditches, seems to have caused structural problems. An area of limestone and clay hardstanding (762), confined to the area above Iron-Age
Fig. 12. Period 6: Anglo-Saxon features (SFB = sunken-featured building; PBS = post-built structure).
Fig. 13. Sunken-featured buildings 1, 3, 6 and 7.
ditches E and F within the floor plan of the Anglo-Saxon structure, is interpreted as an attempt to counter subsidence. This artefact-rich deposit was cut by five substantial sub-square postholes ([1585], [1588], [1598], [1652] and [1672]) which may represent major structural repairs to the eastern end of the structure also necessitated by the subsidence. Part of a possibly contemporary fenceline occurred 2 m beyond the western gable end of the structure.

PBS 14 consisted of a sub-rectangular arrangement of postholes, measuring 8.2 by 6.0 m (?+). A western alignment of postholes was not revealed despite intensive hand cleaning of the area. Its absence may be explained either by truncation by ditch P or by failure to identify postholes cutting the fill of that ditch. Alternatively, the western alignment may be represented by postholes immediately west of ditch P or it may have never existed and PBS 14 was an open-sided structure. Two phases of construction on slightly differing alignments appear to be represented.

PBS 15 comprised an alignment of five postholes, possibly representing about half of an Anglo-Saxon post-built structure. It measured 10 m in length and at least 2 m in width, while linear feature [1852] may represent a beam slot forming an internal division. A possible fenceline appeared to enclose the structure. It consisted of a linear alignment of evenly spaced postholes, extending for over 18 m and running 0.75 m south of, and broadly parallel to, ditch M.

Land Divisions (Fig. 12)
Four parallel ditches, J, K, L, and M, traversed the site aligned approximately NW–SE. The ditches were very shallow, rarely penetrating the gravel to a depth greater than 0.05 m, and often
were only identified along their full alignment as a linear shadow or stain. Ditches K, L, and M were evenly spaced at approximately 28-m intervals, but the 10-m spacing between ditches J and K suggests a wide trackway or droveway. A small quantity of Anglo-Saxon pottery was retrieved from each of the ditches.

At the northern limit of the site, the postulated trackway was cut by ditches N, P, and R. The relationship between these remains undetermined, but they are likely to be broadly contemporary. Ditch N, while parallel to ditch K, is also perpendicular to ditch R, with the 1.5-m gap between the ditches possibly allowing access.

At the southern extent of the site, ditch T cut ditch M. Its dimensions were very similar to ditch P suggesting it may form a southern, though interrupted continuation. Anglo-Saxon pottery and an iron knife were recovered from the ditch. Ditch P, parallel to W, was cut by ditch U, which ran NW–SE beyond both the eastern and western limits of the excavation.

Multiple Ditch Complex (Figs. 12 and 17)
Within the north-eastern corner of the excavation a complex and multi-phased sequence of intercutting ditches (X and S) was revealed truncating Anglo-Saxon ditches R and J. Interpretation of the ditches remains problematic and, although the complex appears subcircular in plan, it is likely that the repeated effect of recutting has rounded the corners of a sub-rectangular enclosure. Four phases of ditches were identified, all steep-sided, at least 1.8 m in width, and much deeper.
than the other Anglo-Saxon ditches. The original ditch [1409] contained a flat base and measured 1.1 m in depth. Secondary ditch [1408] was exceptional in being ‘V’ shaped in profile and measured 1.3 m in depth. The third [850] and fourth [845] phase ditches were both flat-bottomed and 0.8 m and 0.7 m deep respectively.
A discrete and localised area of small pits and postholes (Y) was identified. All the pits were small and bowl shaped (typical diameters being 0.3 m) and their backfills contained evidence of craft debris, including annular loomweights and bone pins, as well as a small quantity of Anglo-Saxon pottery and animal bone.

Two pits were identified close to the north-eastern limit of the site. Pit [858] measured 1.4 m in diameter and 0.8 m in depth, and sherds of Anglo-Saxon pottery and animal bone were recovered from the single homogeneous fill (857). Pit [1537] 9 m further north contained a residual sherd of Iron-Age pottery and a fragment of rotary quern possibly of Anglo-Saxon origin.

Possible Chronology of Anglo-Saxon Occupation

It is likely that only part of an extensive settlement was revealed during the excavation. The limited stratigraphic evidence, coupled with the lack of well-dated comparable Anglo-Saxon pottery assemblages, means that it is difficult to outline with any certainty the chronology and duration of the identified settlement. However, the high proportion of organic-tempered wares recovered is suggestive of settlement during the late 5th to 8th centuries, and in particular the 6th and 7th centuries when such wares were at their most popular (see Timby, below). Such a date range would allow a broad correlation to be drawn between the lifespan of the settlement and the nearby cemetery (Boyle et al. 1998).

The chronology, if not the timespan, of the Anglo-Saxon ditches is easier to determine, allowing three phases to be proposed. The initial development of parallel ditches J, K, L, and M suggests a regulated series of boundaries. These were superseded by ditches N, P, R and T, and ditch M was also cut by SFB 1. A final phase of ditches may include W and X; SFB 8 also cut ditch P. Multiple-ditch complex X is assigned to this final phase by virtue of cutting ditch R, although it is recognised that the intensity of intercutting may indicate a much longer duration of use.

If it is accepted that the structures are related to the ditches, subsequent attempts at phasing are dependent upon the spatial patterning and alignments of the remaining buildings and assume that groups or clusters of associated buildings existed. Ditch M ran parallel and 0.75 m to the north of PBS 15 and its associated fenceline. No relationship with any SFB could be identified, the nearest being SFB 1 which clearly cut ditch M. Any further structural elements associated with PBS 15 may be located beyond the south-western edge of excavation. PBS 14 and SFB 7 appear to form a distinct and aligned grouping, as may structures 8 and 13. Associating structures 7 and 14 with one of the phases of land division is problematic, although the first phase may be
the most likely given that the structures are perpendicular to ditch K. SFB 3 lay 4 m north of, and broadly parallel to, a putative continuation of ditch L, and may be contemporary with this initial phase of land division. Such an interpretation could be extrapolated to include SFB3 with PBS 14 and SFB 7, forming a unit of structures.

SFBs 6 and 9 are more difficult to fit into a putative sequence and their location close to the edge of the site may mean that they are spatially associated with land divisions and/or structures beyond the limits of the excavation. It has been suggested, solely on the grounds of ceramic evidence (see below), that SFB 6 may be the earliest of the identified Anglo-Saxon structures, perhaps dating to the 5th–6th century. It is also worth noting that SFB 6 is considerably smaller than the other identified SFBs, which by analogy with the sequence at Mucking, Essex, and elsewhere would support a relatively early date. The other SFBs had broadly similar dimensions, ranging from 4.3 m to 5.2 m in length. At Mucking most of the SFBs were 4 m or less in length, while those that were more than 4.5 m long lay primarily in the 7th-century sectors of the site. Indeed throughout the country the largest SFBs date to the 7th or early 8th centuries (Hamerow 1993, 11). If this model is followed at Sherborne House, it can be suggested that while SFB 6 might date to the 5th or 6th century, the other SFBs and associated ditches fit more comfortably into a 7th-century context. Such a chronology would be consistent with the 6th- or 7th-century date suggested by the dominance of organic-tempered fabrics in the pottery assemblage.

Thus it can be maintained that there is some degree of rudimentary planning to the settlement at Sherborne House. Clearer evidence of regulated settlement is more typical of the middle Saxon period (West 1985).

Period 7: Undated (Fig. 3)

A large number of postholes identified have not been assigned to either buildings or fencelines. Many can be projected into alignments or structures of varying degrees of credibility, but the value of such speculation is called into question by the lack of artefactual material retrieved from individual features and by the high degree of redeposition across the site. Alignments cannot be confidently assigned to any of the periods, but a number of functions might be suggested, such as two- and three-post racks, a possible four-post structure, and fencelines.

THE FINDS

POTTERY by Jane Timby

Introduction

The excavation resulted in the recovery of c. 1,675 sherds of pottery weighing 19.8 kg. The assemblage is dominated by wares of late Bronze-Age/early-middle Iron-Age and Anglo-Saxon date accompanied by a few sherds of Roman, medieval and post-medieval currency. In the following report the assemblage is dealt with on a chronological basis starting with the prehistoric wares.

The later Bronze-Age/Iron-Age material augments wares already recorded from the Lechlade locality (e.g. Hingley 1986; Allen et al. 1993), although generally speaking lowland sites of this date are relatively scarce in Gloucestershire. The Anglo-Saxon domestic assemblage is of particular importance as it complements pottery recently recovered from the cemetery at Butler’s Field (Boyle et al. 1998; Underwood-Keevil in prep.).
Table 3. Pottery quantification by fabric type. An asterisk indicates a value of less than 1%.

Fabric	Description	No.	%	Wt.	%	Fabric	Description	No.	%	Wt.	%						
Prehistoric																	
LPH1	coarse shell	2	*	13	*												
LPL1	fossiliferous limestone	638	38	9083	46												
LPL2	fossiliferous limestone	171	10	2292	12												
LPL3	oolitic limestone	1	*	36	*												
LPL4	fossil shell	10	*	127	*												
LPL5	fossiliferous limestone	50	3	561	3												
LPL6	limestone with sand	4	*	37	*												
LPL00	misc. other limestone	8	*	70	*												
LPS1	quartz sand	8	*	79	*												
LPS2	quartz sand	39	2	279	1.5												
LPS3	quartz sand	46	3	439	2												
LPS4	fine micaceous sandy	111	7	770	4												
LPS5	sand with limestone	4	*	14	*												
LPS6	haematite coated	4	*	11	*												
LPS00	misc. other sandy	8	*	41	*												
LPFL	calcined flint	3	*	15	*												
LPVSL	organic/glauconitic	9	*	190	1												
Sub-total		1,116	14,057														
Anglo-Saxon																	
SXL1	oolitic limestone	60	3.5	488	2.5												
SXL2	finer oolitic	13	*	96	*												
SXL3	calcite-tempered	3	*	31	*												
SXL4	fossiliferous limestone	2	*	19	*												
SXLV	organic and limestone	32	2	326	1.5												
SXS1	coarse quartz sand	2	*	4	*												
SXS2	sub-angular quartz	1	*	8	*												
SXS4	gravel flint-tempered	1	*	8	*												
SXX1	organic-tempered	21	1	173	1												
SXX2	organic-tempered	179	11	2,314	12												
SXX3	organic-tempered	157	9.5	1,512	8												
SXX4	miscellaneous	1	*	2	*												
Sub-total		472	4,981														
Medieval																	
BRILL	Brill-Boarstall type	1	*	2	*												
MINETY	Minety	5	*	31	*												
MEDSL	sand and limestone-temper	1	*	2	*												
MEDMALV	Malvernian ware	1	*	1	*												
Sub-total		8	36														
Post-medieval																	
PMCH	modern china	7	*	25	*												
PMFE	iron-glazed kitchen ware	4	*	4	*												
PMGRE	glazed earthenware	19	1	141	1												
PMST	stoneware	1	*	3	*												
PM00	other	5	*	74	*												
Sub-total		36	2	248	1												
Total		1,675	100	19,797	100												

Methodology

The pottery is difficult to deal with for several reasons. First, the great similarity in technology and some overlap in the use of local clays and tempering materials for both the Iron-Age and Anglo-Saxon material makes it sometimes difficult to discriminate between periods for undiagnostic single sherds. Second, it is clear that there is a considerable degree of redeposition of prehistoric material in the Anglo-Saxon features and that intercutting of features of different periods has led to the contamination of finds. Last, of the c. 335 contexts yielding pottery, c. 124 (37%) produced only one sherd and c. 234 (70%) produced up to five sherds. These factors have meant that 15% of the assemblage remains unphased. As a result sherds have been selected for illustration so that they reflect the range of material present rather than form a chronological sequence within periods.

The sherds were sorted into fabrics based on the principal inclusions present with further subdivisions resulting from the size and frequency of the inclusions (Table 3). Prehistoric fabrics are prefixed with the letters LP and Anglo-Saxon fabrics with SX; the principal tempering agents present are denoted by letters (H for coarse shell; L for limestone; S for sand; SL for sand and limestone; FL for flint; and V for organic). The Roman codes broadly conform to the National Roman Fabric Collection recommendations (Tomber and Dore 1998). The full data has been summarized on an Excel spreadsheet available as part of the archive.

Despite the disturbed nature of many of the deposits, the overall sherd preservation was good although obviously variable for different groups. In general terms the prehistoric material had an average sherd weight of 12.5 gm, the Roman wares 11.0 gm and the Anglo-Saxon material 10.5 gm.

Prehistoric Pottery (Periods 2 to 4)

Prehistoric sherds account for c. 67% of the total assemblage by count, 71% by weight. Fifteen prehistoric fabrics were identified and they fall into two main groups, Jurassic fossiliferous limestone-tempered wares and sandy wares. In total the former group accounts for 79% by count of the prehistoric assemblage and the latter for 20% (Table 3). The material was relatively well-preserved with some quite large fragments. The surface condition of the sherds was also generally good.

Fabrics

CALCAREOUS

LPH1: an oxidised orange-brown, moderately hard fabric with a coarse fossil shell temper. Shell fragments up to 8 mm in size.

LPL1: a dark red-brown, orange-brown or black ware with a lighter core. Moderately hard ware (scratched with finger-nail). The clay contains a common to moderate frequency of fossil shell, calcitic fragments, limestone, bryozoan, occasional ooliths. The inclusions occasionally reach up to 5 mm in size but are generally finer. Illustrated vessels: Fig. 18, nos. 1–2, 5, 7, 9, 12–17, 19; Fig. 19, nos. 22, 24–5, 28–33, 35–6, 38.

LPL2: variable coloured ware, red-brown, brown or grey with a finely micaceous clay. The paste contains a sparse to moderate frequency of very fine, rounded grains of iron (less than 0.25 mm), a sparse scatter of limestone, bryozoan and fossil shell (larger fragments up to 6 mm) and a sparse to moderate scatter of well-sorted, rounded quartz. Illustrated vessels: Fig. 18, no. 18; Fig. 19, nos. 23, 34, 37.

LPL3: a moderately hard, mid orange ware. The paste contains a sparse scatter of ill-sorted inclusions of oolitic limestone with rare fragments up to 12 mm. Very finely micaceous.

LPL4: a dark brown ware with an orange interior and grey core. The paste contains a sparse to moderate density of coarse fossil shell (up to 5 mm). The ware has a very irregular surface.

LPL5: variable in colour from dark brown to black to lighter orange brown with a grey or brown core. The
paste has a fine sandy texture with a common density of very fine quartz sand visible at × 20. The clay body also contains sparse organic material, a scatter of sparse limestone or fossiliferous fragments, including bryozoa, and very fine mica. Vessels often have a smoothed exterior. Illustrated vessel: Fig. 19, no. 20.

LPL6: a dark grey ware with a hard, sandy texture and sparse fine limestone (less than 0.5 mm). Vessel with thin walls and a smoothed surface.

SANDY
LPS1: an orange red ware with a grey core. Very fine sandy texture with fine white mica. The paste contains a sparse scatter of sub-angular quartz, occasional rounded red-brown iron in a finely calcareous clay matrix.
LPS2: a black ware with a red-brown core. A moderately hard, sandy ware with a common to abundant frequency of well-sorted, sub-angular quartz (less then 0.25 mm), rare limestone (up to 1.5 mm). Fairly thin-walled vessels with burnished surfaces. Illustrated vessels: Fig. 18. no. 4; Fig. 19, nos. 26–7.
LPS3: a red-brown ware with a black core. A finely micaceous clay body with a sandy texture. The paste contains a moderately well-sorted, mainly dark coloured, rounded quartz (less then 0.5 mm in size) and occasionally rounded iron grains.
LPS4: a moderately hard brown ware with a dark grey core. Occasionally the core shows orange-red margins with a black-brown interior. A fine, sandy fabric containing very fine white mica. At × 20 magnification the matrix can be seen to be composed of a moderate frequency of very fine quartz sand with no other visible inclusions. Illustrated vessels: Fig. 18, nos. 3, 6, 8, 10; Fig. 19, no. 21.
LPS5: a mid red-brown ware with orange-red outer margins and a dark grey-black core. A hard, finely micaceous fabric with a sparse scatter of limestone and fossiliferous detritus, rare rounded, dark coloured quartz and sparse fine, dark brown iron.
LPS6: very fine, dark grey sandy micaceous fabric similar to LPS4. Distinguished by the presence of a haematite-rich slip on the surfaces. One sherd from (821) has a calcareous residue on the internal surface.

FLINT-TEMPERED
LPFL: a patchy red-brown to brown ware with a dark brown interior and dark grey core. A hard fabric with a harsh feel. The sandy matrix contains a sparse to moderate frequency of angular, calcined flint (up to 5 mm), sparse fine quartz, iron and occasional mica flecks.

ORGANIC-TEMPERED
LPVSI: orange-brown with a black core. Very sandy fabric with a moderate frequency of well-sorted glauconitic sand. The paste contains a moderate frequency of coarse organic grass or straw. Illustrated vessel: Fig. 18, no. 11.

Forms
There are no complete profiles in the assemblage and only a limited number of sherds which are sufficiently large to determine overall vessel shape. Most of the vessels appear to be relatively well-known types and can be paralleled with other material from the Upper Thames Valley, in particular with large assemblages such as that from Ashville, Abingdon (DeRoche 1978). Broadly the material can be divided into six basic types.

A: Vessels with expanded rims
A1: internally expanded. Finger-tip decoration occurs on the body but not on the rims. One vessel has a cor- don. Fig. 18, no. 5; Fig. 19, nos. 33, 36.
B: Jars/bowls with a curved profile
B1: with curved walls and an undifferentiated rim. Fig. 18, nos. 9, 12; Fig. 19, nos. 20, 23.
B2: vessels with a short defined, simple rim and barrel-shaped body. Fig. 18, no. 18; Fig. 19, nos. 21, 26, 31.
B3: vessels with a slightly expanded rim and baggy profile, some with finger depressions on upper body. Fig. 18, nos. 2, 11.
B4: barrel-shaped vessels with small countersunk handles.

C: Angular vessels
C1: vessels with outwardly flaring rims. Fig. 18, no.1.
C2: vessels with inwardly angled rims and probably a sharp body carination. Fig. 19, no. 32.
C3: sharply carinated body sherds. Fig. 18, no. 7.

D: Straight-sided vessels
D1: with undifferentiated rims. Fig. 18, nos. 10, 14; Fig. 19, nos. 22, 25, 28, 38.
D2: with slight rounded shoulder carination sometimes defined with finger depressions. Fig. 18, nos.13, 15; Fig. 19, nos. 29–30, 34–35.

E: Bowls
E1: round-bodied or slackly carinated bowls with vertical or flaring rims. Fig. 18, nos. 3–4.
E2: round-bodied bowls with an undifferentiated rim. Fig. 18, no. 8.
E3: plain vertical rim, profile uncertain. Fig. 18, no. 6.
E4: haematite slipped bowls, forms uncertain.

F: Miscellaneous
F1: vessels with shaped rims, profile uncertain. Fig. 18, nos. 16–17; Fig. 19, nos. 24, 37.

Type A and C vessels occur exclusively in limestone-tempered fabric LPL1. Type B and D vessels occur in fabrics LPL1, LPL2, and LPL5 and to a lesser extent in the sandy fabrics LPS2 and LPS4 with a single vessel in fabric LPVSI. The bowls (form E) tend to occur in the finer sandy fabrics such as LPS2 and LPS4.

Although many vessels show signs of rough wiping or scraping, few showed evidence of a deliberate finish. A small number of vessels have a smoothed finish and some are burnished, particularly some of the sandy fabrics. There are four sherds with a haematite rich surface slip (fabric LPS6).

Decoration
Although decoration is not particularly common, occurring on less than 2% of the later prehistoric assemblage, several techniques were employed. Most common was the use of finger depressions on the body of the pot, either below the rim on the upper body (e.g. Fig. 18, nos. 2, 5; Fig. 19, no. 33) or on a carination (Fig. 18, no. 7; Fig. 19, no. 35). In addition, there are two rims decorated with finger-tipping on the upper surface or outer face (e.g. Fig. 19, no. 37) and two rims with short slashed decoration (e.g. Fig. 19, no. 38). Both these features have been noted on material from other sites in Lechlade (cf. Hingley 1986, figs. 7–10; 1993, fig. 31).

Less common was the use of an applied cordon on a single example (Fig. 19, no. 36). One sherd was decorated with incised parallel vertical lines (Fig. 18, no. 8), whilst three sherds had more complex decorative schemes. Two of them, possibly from the same vessel, have a curvilinear style of decoration involving curving tramlines and impressed dots (Fig. 19, nos. 26–7). The style is unusual in the area and has more affinity with the looped designs found on the globular bowls from Frilford, Oxfordshire (cf. Harding 1974, fig. 69 a–b). One vessel (Fig. 18, no. 6) has a more angular geometric style of decoration with an infilled triangle. Similar sherds to the last were found at Charlton Kings, near Cheltenham (Purnell and Webb 1950, 1998), at Crickley Hill (Elsdon 1994, illus. 203) and at other sites in Lechlade (e.g. Hingley 1986, fig. 10). There were no examples of the slashed body decoration found on some of the vessels from The Loders (ibid.).

Use
Many of the calcareous wares showed evidence of use in the form of leached interior walls.
Several vessels had sooting on the exterior surfaces and two sherds had a calcareous deposit on the inner surface.

Distribution across the site

A total of 189 sherds (2,716 gm) came from Period 2 contexts. Taking the group as a whole, the calcareous wares account for 89% by weight compared to 11% sandy wares. Small collections of pottery were associated with two of the roundhouses. Eleven sherds (fabrics LPL1, LPL2 and LPS4) were recovered from the terminal of the curvilinear gully [608] of Structure 11. Structure 12 yielded just 12 sherds (LPL1, LPL2 and LPS00) from various postholes, including a sherd with finger depressions and a type C1 vessel (Fig. 18, no. 1), both typical of the early Iron Age.

Ditch A produced a good group of 83 sherds including a vessel with a finger-tipped rim, a body sherd with finger depressions and two finer sandy ware type E1 bowls (Fig. 18, nos. 3–4). Sandy wares account for 20% of this assemblage by weight. Several of the limestone-tempered wares in pit [701] were noticeably leached on the interior surfaces. Of the total of 25 sherds, five were sandy fabrics. Pits [1043] and [1075] produced exclusively limestone-tempered wares. Of particular note is a small handle from a countersunk handled jar in [1043] and two finger-depressed body sherds from [1075]. Pit [1475] contained just four sherds. Nine sherds of pottery came from ditch C, and a further ten sherds from ditch S (Period 6), including a finger-decorated type A jar (Fig. 18, no. 5) and a sherd with incised decoration (Fig. 18, no. 6).

Other unphased material which undoubtedly derived from Period 2 occupation includes a cordoned vessel from (513) (Fig. 19, no. 36), along with other Type A and Type C vessels and occasional flint-tempered and coarse shell-tempered sherds (LPH1).

Period 3 contexts produced just 51 sherds (7,171 gm). The calcareous wares appear to show a modest decline compared to Period 2, accounting for just 78% by weight with a concomitant increase in sandy wares, although limitations imposed by such a limited assemblage should not be overlooked. Ditch E produced 19 sherds with further material from Structures 5 (12 sherds) and 10 (20 sherds). Some contamination is evident in several Period 3 features including occasional Roman and Anglo-Saxon sherds.

Period 4 yielded the largest of the phased assemblages with some 526 sherds (5,280 gm). Unfortunately this was spread over 72 features, so each discrete group is relatively small and precludes much meaningful statistical analysis. Of the three pits that produced more than 20 sherds ([855], [914] and [1815]), the last produced 89 sherds of which 6% (wt) were sandy and 94% calcareous. At least two bases had organic impressions on the underside. As with Period 3 a small amount of contamination was present. Taking the group as a whole, 12% comprised sandy wares and 88% calcareous. The lower sandy element is perhaps surprising as the usual trend in the Upper Thames Valley is for an increase through time (Lambrick and Robinson 1979). This may indicate that the pits allocated to this Period may span a long period and that conflating the figures is falsifying the results. Alternatively there may be a high residual element in some of the features. However, a high percentage of early Iron-Age sandy wares has been noted elsewhere at Lechlade (Hingley 1986, 42) and it is possible that there are other explanations for the composition of the groups.

Discussion

The later prehistoric pottery from Lechlade provides a valuable addition to the material already documented from the locality, in particular the late Bronze-Age/early Iron-Age assemblages from The Loders (Hingley 1986), Roughground Farm (Hingley 1993), Butler’s Field (Barclay 1998) and Gassons Road (Timby 1998a). Similar assemblages of broadly contemporary date from low-lying sites in the immediate locality have been recorded from Shorncote Quarry, Somerford
Keynes (Morris 1994; Barclay et al. 1995), and from three sites recently investigated along the line of the A419/A417 Swindon to Gloucester road at Preston, Ermin Farm and Court Farm, Latton (Timby 1999). Further afield, early Iron-Age pottery has been found at Sandy Lane, Charlton Kings (Purnell and Webb 1950), and is more familiar from the Cotswold scarp hillforts to the north-west such as Uley Bury and Norbury (Saville 1983), Burhill (Marshall 1989), Winson (unpublished material, Cirencester Museum) and Crickley Hill (Elsdon 1994), and from early to middle Iron-Age undefended settlements such as that near Naunton (Timby no date).

The Sherborne House assemblage shares many traits in general form and fabric range with that from The Loders. However, Hingley (1986, 42) observed that The Loders assemblage may be slightly unusual as 50% of the fabrics were in the sandy range, contrasting with the higher proportions of calcareous wares from other early Iron-Age sites. It was noted that the percentage of incised decorated and haematite-coated sherds was not unusual compared to other Thames Valley sites, accounting for 4% and 3% of the assemblage respectively (Hingley 1986, table 3). At Roughground Farm (Hingley 1993, 44) 4.7% of the Iron-Age assemblage had finger tipping or incised decoration, but the sandy wares formed a much smaller component of the pottery than at The Loders. The Sherborne House assemblage contains an even lower percentage of sandy wares in the Period 2 group compared to both the other Lechlade sites, and at just 2% has markedly fewer decorated sherds. The Loders may be exceptional in the high proportions of fine sandy wares or it may be that the three sites have a slightly different chronological emphasis. Further quantified assemblages from the Gloucestershire Cotswolds are required to assess the significance of the Lechlade figures.

A comparison of the Lechlade material with the Shorncote Quarry group (Morris 1994, 38) shows some significant differences in the fabric composition. The most abundant fabric group at Shorncote was the calcareous group largely comprising fossil shell-tempered wares. Grog-tempered wares also featured in the assemblage, but are not present at Lechlade. The forms are dominated by carinated vessels, ovoid forms and shouldered jars and 25% of the assemblage is decorated, including finger-tipping and applied cordons. It is suggested that the Shorncote assemblage most probably dates to the 9th to 8th centuries B.C.

The early Iron-Age assemblage at Crickley Hill (dated to the 8th to 6th century B.C.) is characterised by angular jars, occasionally with finger-tip decoration which is generally regarded as not common before the 8th century (Barrett 1980, 231). Type A vessels, with expanded rims, occur in the assemblages at Crickley Hill (Elsdon 1994, type A) and Ashville, Oxfordshire (DeRoche 1978, form A), but are restricted to internally flanged examples only in the Sherborne House assemblage and thus are probably a later development.

Whilst there would appear to be some direct parallels between some vessel forms from Lechlade and material from both Crickley Hill and Shorncote, perhaps suggesting a partial chronological overlap, Lechlade would on balance appear to be slightly later, perhaps dating from the 7th to 6th century B.C. Unlike at Crickley Hill, many of the hillfort sites and Shorncote, occupation appears to continue at Lechlade into the middle Iron Age, mirroring the pattern seen on many of the Thames Valley gravel sites. Most of the middle Iron-Age wares comprise plain vertical-sided vessels (Type D) with undifferentiated rims. The complete absence of any later Iron-Age forms and fabrics suggests abandonment at some point in the 3rd to 2nd century B.C.

Catalogue of illustrated pottery (Figs. 18 and 19)
2. Wide-mouthed vessel with a slightly internally expanded rim (B3) decorated with impressed finger
Fig. 18. Illustrated pottery sherds 1–19.
Fig. 19. Illustrated pottery sherds 20–38.
34. Large wide-mouthed vessel with a slightly expanded rim and a neck showing a series of finger depressions where formed (D2). Patchy red-brown/mid brown surfaces with a dark grey inner core. Fabric LPL2. Layer (293). Unphased.
35. Plain sided jar with a slight shoulder carination emphasised with finger depressions (D2). The exterior surface above the carination has been horizontally smoothed whilst the lower body has been vertically scraped. Red-brown in colour with dark grey patches. Slight sooting on the upper exterior surface. Fabric LPL1. Slot [513] (514). Unphased.

Romano-British Pottery (Period 5)

The Roman pottery, although only totalling 43 sherds, appears to contain both earlier (A.D. 50–100) and later (4th-century) elements. No specific Roman features were identified and just over half the sherds appear to be intrusive or slumped into Period 3 and 4 contexts. The remaining 19 sherds came from Anglo-Saxon or unstratified deposits. Earlier material was noticeably associated with ditch E, suggesting possible unrecognised recuts, later disturbance, or that the features were still evident in the Romano-British period and infilled gradually. Most of the later sherds, including Oxfordshire colour-coated ware, occurred in association with Anglo-Saxon sherds and may well have been in contemporary usage. A few 2nd- to 3rd-century sherds are present including a single Dorset black-burnished flat rim bowl sherd from ditch R and Wiltshire oxidised ware and Severn Valley ware from (986). Both are Anglo-Saxon contexts and therefore these may be curated vessels.

Fabrics

LOCAL WARES (Wiltshire)
GROG1: patchy brown to black ware with a grey core. Smooth slightly soapy feel. Moderate scatter of sub-angular light coloured grog. Wheel-turned vessels.
WILRE1: North Wiltshire fine orange sandy ware.
WILRE2: a hard, mid grey ware with a blue-grey core. A well-fired, fine sandy ware containing a common frequency of fine, well-sorted clear quartz (× 20) with occasional grains of quartzite and black iron. Form: wheelmade wide-mouthed jar with an expanded rounded rim. Source: probably a North Wiltshire product.
WILRE2: a hard grey, finely micaceous ware with a grey core or grey with red-brown margins. Well-fired. At × 20 a very fine quartz background is visible with a scatter of slightly larger grains (less than 0.25 mm). Flecks of white (muscovite) mica are clearly visible on the surfaces.
WILRE3: brown with a grey core with orange margins. The paste is characterised by an ill-sorted temper of rounded quartz sand up to 1 mm in size and very fine white mica.

OXID: miscellaneous fine oxidised sandy ware.

REGIONAL WARES
DORBB1: Dorset black-burnished ware.
SVWOX: Severn Valley ware (Webster 1976).

Anglo-Saxon Pottery (Period 6)
The Anglo-Saxon wares account for c. 28% of the assemblage by count, comprising 472 sherds and weighing 4,981 gm. Twelve fabrics were identified which broadly fall into four groups: calcareous, flint, sandy, and organic-tempered.

Fabrics
CALCAREOUS
SXL1: a brown or black ware with a black core/interior. The matrix contains a common frequency of fine oolitic limestone largely as discrete grains (1 mm and finer), but occasionally as conglomerates. At × 20 a very sparse scatter of fine, sub-angular, iron-stained quartz, occasional shell and other calcareous matter and rare iron is also visible.
SXL2: a brown ware with a grey-black interior/core. The paste contains rare, rounded, fine (less than 0.5 mm) dark-coloured quartz, and a sparse to moderate scatter of discrete limestone ooliths (less than 1 mm), rare calcite and fossil fragments.
SXL3: a generally black ware, occasionally pale brown. The paste contains a sparse to moderate scatter of angular white calcite (up to 1 mm) and sparse organic matter.
SXL4: a dark red-brown ware with a matt finish. The paste contains a sparse to common frequency of grains of oolitic limestone (up to 2 mm), a scatter of fine, dark coloured, rounded quartz and a sparse frequency of very fine, dark brown iron (less than 0.5 mm).
SXLV: a hard, compact black fabric with a smooth soapy feel. The paste contains a sparse to common frequency of an ill-sorted calcareous mixture of limestone, fossiliferous material and discrete ooliths intermixed with coarse organic matter. Illustrated vessel: Fig. 20, no. 43.

FLINT-TEMPERED
SXFL: a hard, black ware with a hackley fracture. The paste contains a scatter of ill-sorted, rounded to sub-angular quartz (less than 1 mm), sparse coarse organic matter and a scatter of coarse gravel flint up to 5 mm in size.

SANDY
SXSI: a ware predominantly with an oxidised orange exterior and a dark grey interior/core. A hard fabric with a slightly hackley fracture. A very finely micaceous clay with a sparse to moderate scatter of ill-sorted, rounded, polished quartz up to 2 mm.
SXSI2: a hard, brownish-black ware with a black core/interior surface. The paste contains a moderate to common frequency of sub-angular to angular, moderately well-sorted quartz. The fabric has a slightly sparkling appearance where light catches the quartz facets. Rare ooliths, angular limestone and quartz sandstone grains are also present. Form: handmade bodysherd with burnished surfaces.

ORGANIC
SXSI1: an unevenly fired patchy brown to black ware with a grey-black interior and core. The paste has a very sandy texture and contains a common frequency of very fine, moderately well-sorted quartz sand, a sparse frequency of coarse organic matter, rare limestone and several opaque dark coloured grains of iron.
SXSI2: a brown ware with a black core and interior. Very finely micaceous clay containing a common to
moderate frequency of coarse organic matter with linear streaks up to 6 mm. A very fine, slightly sandy, texture with a smooth feel.

SXV3: similar to SXV2, but less obviously micaceous. Brown with a black core/interior. A clean clay matrix containing a common to dense frequency of organic temper and rare limestone inclusions. Smooth soapy feel.

Forms

All the vessels are handmade and some preserve finger and nail impressions. There are no complete profiles. The majority of the vessels are large wide-mouthed cooking pots with everted rims and rounded bases (Fig. 20, nos. 44, 50–1), but several vessels have a burnished finish. Other types include narrowermouthed globular vessels (Fig. 20, no. 46), perhaps designed for storage or holding liquid, smaller round-based bowl forms such as those from (986) (Fig. 20, nos. 48–9) and the more unusual biconical vessel (Fig. 20, no. 52). Most of the vessels are plain. Two exceptions have stamped decoration. A fragmentary bodysherd from SFB 6 (644) (Fig. 20, no. 43) has a single circular stamp which may have had an internal design but is too poor to decipher. An oolitic limestone-tempered vessel from SFB 6 (642) is decorated with four horizontal burnished lines, below which are rows of impressed cross-in-circle stamps. This is the commonest of the

Table 4. Pottery from Period 6 structures.

<table>
<thead>
<tr>
<th></th>
<th>SFB1</th>
<th>SFB3</th>
<th>SFB6</th>
<th>SFB7</th>
<th>SFB8</th>
<th>SFB9</th>
<th>PBS13</th>
<th>PBS14</th>
<th>PBS15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrics</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
<td>no/wt.</td>
</tr>
<tr>
<td>Iron Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXFRS</td>
<td>1/32</td>
<td>-</td>
<td>1/10</td>
<td>-</td>
<td>1/23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WILOX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WILRE1</td>
<td>-</td>
<td>1/92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SVWOX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anglo-Saxon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXV1</td>
<td>6/78</td>
<td>-</td>
<td>4/8</td>
<td>-</td>
<td>1/4</td>
<td>-</td>
<td>-</td>
<td>1/17</td>
<td>-</td>
</tr>
<tr>
<td>SXV3</td>
<td>44/377</td>
<td>17/123</td>
<td>1/3</td>
<td>11/118</td>
<td>35/582</td>
<td>1/5</td>
<td>-</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>SXLV</td>
<td>-</td>
<td>-</td>
<td>11/76</td>
<td>-</td>
<td>2/16</td>
<td>-</td>
<td>6/58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SXL1</td>
<td>-</td>
<td>1/3</td>
<td>33/318</td>
<td>1/10</td>
<td>5/47</td>
<td>1/2</td>
<td>-</td>
<td>1/5</td>
<td>-</td>
</tr>
<tr>
<td>SXL2</td>
<td>-</td>
<td>3/30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SXL3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/5</td>
<td>-</td>
<td>-</td>
<td>1/6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SXL4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2/19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SXFL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1/8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-medieval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMGRE</td>
<td>2/3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1/20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>71/839</td>
<td>36/557</td>
<td>56/444</td>
<td>40/463</td>
<td>98/1,338</td>
<td>8/87</td>
<td>78/1,504</td>
<td>11/128</td>
<td>5/48</td>
</tr>
</tbody>
</table>
Anglo-Saxon stamps, thought possibly to be a good luck symbol (T. Briscoe pers. comm.). Vessels with similar stamps came from the adjacent cemetery in Butler’s Field (Underwood-Keevil in prep.), on a grass-tempered pot from The Barton, Cirencester (Brown 1976, fig. 3.3.27), and on a vessel from Burn Ground, Hampnett (Grimes 1960).

Through use several of the wares are heavily sooted or encrusted with residue.

Distribution across the site
Most of the Anglo-Saxon pottery, some 85%, was recovered from the six sunken-featured buildings on the site (SFBs 1, 3, 6–9) or from features associated with the three post-built structures (PBSs 13–15) (Table 4). Other sherds were associated with ditches, postholes and layer (293). Very few features yielded statistically viable groups of pottery and only three of the SFBs (1, 6, 8) produced in excess of 50 sherds thus limiting any intra-site comparisons of groups.

Of note is the fact that the assemblage of 56 sherds from SFB 6 is dominated by calcareous fabrics (65%), with organic wares accounting for the remaining 35%. This contrasts with (for instance) SFB 7, where, of the 32 Anglo-Saxon sherds, 92% are organic and 8% calcareous. SFB 8 echoed this balance with 93% organic and 7% calcareous. All of the 71 sherds from SFB1 are in organic fabrics.

SFB 9 produced just eight sherds including the only flint-tempered Anglo-Saxon sherd from the site. Both of the stamped vessels from the site came from SFB 6.

Discussion
The Anglo-Saxon assemblage from Sherborne House complements that recovered from the nearby cemetery at Butler’s Field which may have been in use from the mid 5th through to the late 7th or early 8th century (Boyle et al. 1998; Underwood-Keevil in prep.). The much larger assemblage recovered from the cemetery was divided into three fabric groups: calcareous, sandy and organic. The range of fabrics defined is greater than, but appears to broadly equate with, those defined above, although an exact comparison of sherds has not been made. The main fabric recorded from the cemetery was the organic group accounting for 44% (count) and 53% (wt) compared to 75.5% (count) and 87% (wt) from the Sherborne House assemblage. In both cases calcareous wares are the second most common group, 38% by count at the cemetery compared with 16.5% at the Sherborne House site. It was observed that the organic group was largely associated with the cremations which belong to Phase 1 of the cemetery (mid–late 5th/6th century), whilst the sandy wares showed a higher incidence in the inhumation fills.

The assemblage of Anglo-Saxon pottery from Lechlade is probably the largest recovered from Gloucestershire to date. In addition to the material from Butler’s Field, some Anglo-Saxon sherds came from The Loders (Timby 1986), but none were noted from Roughground Farm (Allen et al. 1993). Small groups of Anglo–Saxon pottery have been found at several locations in the general area, most notably Latton, Wiltshire, which included oolitic limestone-tempered material (Bateman 1997a and b); Shorncliffe Quarry (Barclay et al. 1995, 43); Barnsley Park (Fowler 1976, 42); and Cirencester (Vince 1984). Within the Cotswolds, material has been recovered from Crickley Hill, Wycomb, Turkdean, Burn Ground in Hampnett, Bourton-on-the-Water, Ewen, Guiting Power, Hawling and Blockley (Timby 1995). To the south organic-tempered Anglo-Saxon pottery has been recovered from Ashbury, Oxfordshire, and Bishopstone, Wiltshire (Timby 1998b); from Old Swindon, Wiltshire (Butterworth and Seager-Smith 1997); and from a 5th- to 6th-century domestic settlement with an associated cemetery at Collingbourne Ducis, Wiltshire (Timby 2001).

Organic-tempered wares have a very broad chronology spanning from the later 5th to 8th centuries (Vince 1984). The trend appears to show an increased popularity during the 6th to 7th
century (Hamerow et al. 1994, 14–16). By contrast calcareous wares may have become less popular with time. This might suggest that SFB 6 is one of the earliest Anglo-Saxon structures on the site, perhaps dating from the 5th to 6th century, with the occupation of the other structures spanning the 6th to 8th centuries.

Fig. 20. Illustrated pottery sherds 39–52.
Fig. 21. Small finds 1–7.
Catalogue of illustrated pottery (Fig. 20)
45. Simple concave rimmed globular pot. The interior and exterior surfaces have been burnished. The exterior is decorated with a band of four parallel horizontal lines at the base of the neck, below which are horizontal rows of cross-in-circle stamps. Black in colour. Fabric SXLV. SFB 6, (642). Period 6.
50. Simple everted rim wide-mouthed cooking pot. The interior has been smoothed whilst the exterior is burnished. Surface coloration is patchy red-brown, grey, black and brown. Particularly high density of organic tempering. Fabric SXV3. SFB 8, (782). Period 6.

Medieval and Post-Medieval Pottery

A small number of medieval (eight) and post-medieval sherds (36) was present. The medieval material is generally poor and not indicative of in-situ rubbish. The low incidence would imply this area was not close to any medieval occupation.

Fired and Burnt Clay by Jane Timby

The 187 pieces of fired clay recovered included a single abraded fragment of an Iron-Age triangular loomweight from pit [1007] (1008) and c. 70 fragments of Anglo-Saxon annular loomweights. The latter were very shattered and appeared to be of quite crude construction. The majority had a red-brown or brown exterior with a black core. Occasional limestone inclusions were visible. Small quantities were present in SFBs 1, 3, 8 and 9 and other examples came from pits [291], [437], [439], [501] and [624]. Also present were three clay slingshot, two fragments of briquetage, and a small perforated disc, 25 mm in diameter and 5–8 mm thick, made from a Roman grog-tempered sherd (fabric GROG1) (Ditch U, (323); sf54. Period 6).

Catalogue of illustrated pieces of fired clay (Fig. 21)
BRICK AND TILE by Emma Harrison

Only seven fragments of brick and tile (1,048 gm) were recovered. Two box tile fragments (SFB 9 and ditch [204]) were identified, while the remainder comprise brick or unidentifiable pieces.

COINS by Peter Guest

The excavation produced five coins (Table 5). The Dobunnic coin (sf17) and the cut farthing (sf52) came from upper fills of middle Iron-Age pits and are interpreted as intrusive, resulting from subsoil slumping into the pits. The only securely stratified coin is the 4th-century Roman coin struck in the name of the emperor Constans (sf30). This was in almost mint condition and was found in the fill of SFB 3. An increasing number of Roman bronze coins are known from Anglo-Saxon contexts, particularly burials and the fills of SFBs. The Anglo-Saxon settlement at West Stow in Suffolk produced 289 Roman coins, of which 119 were associated with the post-built halls or the fills of 41 separate SFBs (West 1985). The number of coins recovered from each building was usually between one and three, although in certain instances up to ten coins were found (West 1985, table 60), and it seems that Roman coins were regularly included within SFB fills from the early 5th century through to the middle or end of the 6th century.

The evidence from Anglo-Saxon burials also indicates that Roman coins remained familiar objects up to two centuries after the end of Roman Britain. The cemetery at Butler’s Field

Table 5. The coins.

<table>
<thead>
<tr>
<th>sf</th>
<th>Context</th>
<th>Denomination</th>
<th>Obverse</th>
<th>Reverse</th>
<th>Mint</th>
<th>Date</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U/S</td>
<td>Radiate</td>
<td>SALONINUS</td>
<td>Oriens Augg</td>
<td>Rome</td>
<td>253–60</td>
<td>RIC 24</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>‘Rose-Orb’ Jetton</td>
<td>Hans Krauw winckel II — 3 crowns, alternately with 3 lis arranged around a central rose</td>
<td>GOTES SEGEN MACHT REICH. Imperial orb surmounted by a cross patty within a tressure with 3 main arches</td>
<td>Nuremberg</td>
<td>late 16th/early 17th century</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>451</td>
<td>AR unit</td>
<td>Uninscribed western silver, ‘regular’ type</td>
<td>Horse l. with wheel in front</td>
<td></td>
<td>late 1st century</td>
<td>Hobbs 2951/VA 1020 var.</td>
</tr>
<tr>
<td>30</td>
<td>581</td>
<td>AE3</td>
<td>Constans</td>
<td>VICTORIAE DD AVGGQ NN</td>
<td>//AQP — Aquileia</td>
<td>347–348</td>
<td>CK 702</td>
</tr>
<tr>
<td>52</td>
<td>1823</td>
<td>cut AR farthing Illegible</td>
<td>Illegible</td>
<td>Illegible</td>
<td></td>
<td>11th/12th century</td>
<td></td>
</tr>
</tbody>
</table>
featured a number of coins, mainly from female graves (Boyle et al. 1998). Many of the coins had been pierced for suspension, although a number of un-pierced examples were found within bags or purses that often contained other objects valuable to the deceased. Similar patterns of deposition were noticed by Roger White in his extensive survey of Roman objects from Anglo-Saxon burials (White 1988).

Roman coins from Anglo-Saxon contexts are always bronzes, usually produced during the second and third quarters of the 4th century. How they were originally obtained is not fully understood, although it does seem clear that these objects were highly valued. It has been suggested that Roman coins performed an amuletic function during the early Anglo-Saxon period (White 1988, 100–1). If this was the case their incorporation into the fills of SFBs might require an explanation beyond that of accidental loss.

METALWORK by Jane Bircher

Thirty-eight metal objects (including nails) were recovered during the evaluation and excavation. Twenty-seven of these items were retrieved from Anglo-Saxon contexts, although the possibility that several of these objects are residual, or possibly curated Iron-Age or Romano-British pieces, should not be overlooked. Particular concentrations of objects were retrieved from the south-western terminus of ditch T and from ditch U (five and six objects respectively), with a further eight items retrieved from the fills of SFBs. A full catalogue is available in the archive. The following list comprises datable or intrinsically interesting items presented in relation to the period of the context from which they were recovered.

Anglo-Saxon (Period 6)

Knife (Fig. 21, no. 7), with an angled back and curved cutting edge, now distorted. Dover type 3 (Evison 1987). This type is deposited at the Buckland cemetery, Dover, from the 5th century–A.D. 750. Length 81 mm, maximum width (blade) 10 mm. Ditch T, (119). sf5.

Knife (Fig. 22, no. 8), with a curved back and straight cutting edge. Dover type 4 (Evison 1987) where it seems to be a late type of c. A.D. 625–750. Length 111 mm. (536). sf22.

Knife with a curved back and straight cutting edge. Extant length 55 mm, maximum width (blade) 14 mm. SFB 9, (1605). sf47.

Knife, possibly the tang and part of the blade of a wide-bladed knife although the ‘point’ appears to be bifurcated. The X-ray shows two rivets — one on the short side and one on the inwardly curving side. Length 108 mm, maximum width 42 mm. SFB 3, (488). sf28.

Small awl or chisel. Made from a bar of square section (rectangular at the point) it flattens and widens to form a tapering blunt-ended blade of rectangular section suitable for fine work on bone and leather etc. Similar tools are known from Roman (cf. Manning 1985, 39–41, pl. 16) and Anglo-Saxon contexts (cf. West Stow, West 1985, notably 61, fig. 241.20). Length 67 mm, maximum width 6.5 mm. Ditch U.

Bar of square section pointed at both ends. Possibly a nail but this object is carefully made and could be a small tool such as an awl. Length 38 mm, section 4 × 4 mm. PBS 13. sf55.

Pin of rectangular section, widening above the point and curled over to form a loop at the top. These objects seem to have been used in conjunction with an eyebolt as simple locking devices for carts, harness equipment and doors etc. in all periods from the Iron Age to the present (for an Iron-Age example from Meare see Coles 1987, 70, no. E72, fig. 3.12; for Roman examples and a discussion on usage see Partridge 1981, 114–15, nos. 77–9, fig. 61; for an Anglo-Saxon example see Aldsworth 1979, 141, no. 190, fig. 46 dated to the late 5th or 6th century A.D.). Length 80 mm, width 8 mm. SFB 3. 487. sf21.

?Anglo-Saxon/Medieval

Iron drop handle of square section with curved terminals for use on a casket. Possibly Anglo-Saxon (cf. Boyle et al. 1998, 102, grave 107, no. 1d, fig. 5.78), but probably medieval. 108 × 27 mm. (408) (evaluation). sf6.
Fig. 22. Small finds 8–17.
Medieval
Fragments of folded lead or pewter sheet pierced with a pattern of diamonds and embossed with a fine texture. Possibly a reliquary case for a pilgrim’s object such as a shell from Compostela. Fragment of single thickness 33×27 mm, fragment of multiple thicknesses 53×40 mm. (507) (evaluation). sf3.

Post-medieval/Modern
Two interlinked double-spiked loops. Roman or later. Overall length 55 mm. (091). sf4.

Undated
Two conjoining fragments of a fine copper-alloy pin retrieved from the subsoil. Lengths 13 mm and 20 mm. sf9.
Joiner’s dog. Period unknown. Length 28 mm. (293).

BONE OBJECTS by Jane Bircher (with species identification by Mark Maltby)
Seven bone objects were recovered, which can be dated to the Iron-Age, Roman and Anglo-Saxon periods.

Iron Age
Gouge or point (Fig. 22, no. 9) from a sheep/goat tibia. Distal end and middle of shaft present with the point made towards the proximal end. The distal end shows evidence of canine gnawing and the underside of the point is worn to a high polish. This example belongs to Danebury class 1 which has a long, pointed terminal with raised flanges on either side and a thin, flat point (Sellwood 1984, 382–7). These tools are common throughout the Iron Age. Length 134 mm. Period 4, Pit [054] (055). sf57.
Toggle (Fig. 22, no. 10) made from a longitudinal section of antler, almost certainly red deer. The toggle is now incomplete, but no perforations are extant. It is decorated with a finely incised geometric pattern reminiscent of the designs on early and middle Iron-Age ceramics such as the Yarnbury-Highfield, Southcote-Blewburton, Croft Ambrey-Bredon Hill and Glastonbury groups (Cunliffe 1991, figs. A16–18, 20). The decoration comprises three bands separated by double lines filled with hatching which also occur at each end of the toggle. Band one: two rows of equilateral triangles made by scribing a central line though larger equilateral triangles; the smaller triangles are alternately filled with pecking and left plain. Band two: double ring-and-dot motifs connected by a double line filled with hatching to create a scroll effect. Band three: boxes scored diagonally to form pairs of right angle triangles with each upper triangle filled with pecking. No parallels have been found (for a large group of toggles and discussion of their use see Sellwood 1984, 378–80). Length 34 mm, external diameter 22 mm, internal diameter 18 mm. Period 2, Ditch A, (803). sf31.

Roman
Small, well-made, highly polished pin (Fig. 22, no. 11) with a spherical head of Crummy’s type 3 (Crummy 1979, 157–64). This type appears by the middle of the 2nd century A.D., becomes common in the 3rd century and continues to the end of the Roman period. Length 46 mm. Period 6, posthole [357] (358). sf13.

Anglo-Saxon
Composite double-sided bone and antler comb, complete except for the teeth, of which five remain in situ and 34 survive detached (Fig. 22, no. 12). The teeth do not show any great wear. The comb comprises six toothed sections made from bone and held together by two antler connecting plates (probably red deer) secured by nine iron rivets. The closely spaced rivets at one end indicate a narrow end section. The connecting plates are undecorated, although they have been nicked by the saw when the teeth were cut. Somewhat unusually, the connecting plates extend the full width of the comb and the teeth continue up to each end. A close parallel is published from the Abbot’s Worthy settlement (Fasham and Whinney 1991, 46, no. 25, fig. 36) dated to the early Anglo-Saxon period. Length 147 mm. Period 6, SFB 1, (242). sf8.
Hipped, ‘cheese-headed’ pin, finely made and highly polished (Fig. 22, no. 13). The flat head is slightly oval and the shank has an expansion 10 mm above the point. Both the ‘cheese-shaped’ head and hipped shank are characteristic of late 6th- or early 7th-century pins (cf. West Stow, West 1985, 62 and 123). The type has been discussed in Greep 1995, 1145. Length 37 mm, width (head) 4.5 mm. Pit \[439\] (440). sf15.

Incomplete finely-made ring of oval section taken from the main beam of red deer antler (Fig. 22, no. 14). Function and date unknown. External diameter 41 mm, internal diameter 20 mm. Period 6, PBS 13, (762). sf41.

Undated
Needle (Fig. 22, no. 15) with expanded, flattened head and round eye. A horizontal groove on either side of the eye worn by the thread demonstrates extensive use. Larger, coarser examples occur on Iron-Age sites but the type is unlikely to be Roman. The closest parallels are Anglo-Saxon (cf. West Stow, West 1985, 52, fig. 216.16). Length 96 mm. (54). sf6.

WORKED STONE by Fiona Roe

Seven objects of worked stone were recovered during the excavation. A hammerstone and a possible slingstone were retrieved from middle Iron-Age pits (Period 4), while two rotary quern fragments and two spindle whorls came from the Anglo-Saxon occupation (Period 6). A further fragment of rotary quern is unphased, but may also be of Anglo-Saxon date.

Middle Iron Age (Period 4)
A well worn, near spherical hammerstone or pounder (sf42) was found in middle Iron-Age pit [811]. It was made from a pebble of quartzitic sandstone from a local Pleistocene source, either the river terrace gravels or Drift deposits. Locally occurring Iron-Age hammerstones are recorded in Oxfordshire at Watkins Farm, Northmoor (Allen 1990, 94), and Mingies Ditch, Hardwick-with-Yelford (Allen and Robinson 1993, 80). Hammerstones from Beckford, Worcestershire, on the edge of the Cotswolds, provide the best parallels, since a number of these were found, all utilising pebbles of quartzitic sandstone (Roe forthcoming a). The fact that such hammerstones are not ubiquitous suggests that they may have had a specialised use, or that there may be a chronological significance in their presence or absence from a site. Similar artefacts are common on earlier prehistoric sites, as for instance Yarnton Floodplain, Oxfordshire (Roe in preparation), and this hammerstone could be interpreted as having come from earlier occupation at the site.

The quartzite pebble from pit [815] falls within the size and weight range for the slingstones from Maiden Castle, Dorset (Laws 1991, 232), though there and elsewhere there was a preference for oval-shaped pebbles. In the Cotswold area the most convenient source for small pebbles lay in Drift deposits, and quartzite pebbles from such sources were used for slingstones at sites including Shenberrow (Fell 1961, 31), Uley Bury (Saville and Ellison 1983, fiche), Beckford (Roe forthcoming a) and places around Cirencester (Roe 1999).

Anglo-Saxon (Period 6)
There are two fragments from Anglo-Saxon rotary querns. One is made from Niedermendig lava from the Rhineland and the other from a local variety of Lower Greensand found at Coles’ Pits near Faringdon, some 7.5 miles (12 km) from Lechlade. The latter is apparently the first example from a probable Anglo-Saxon context of a quern of this variety of Lower Greensand.

At Stonea, Cambridgeshire, lava fragments were found in a gully that also contained early Anglo-Saxon pottery dated A.D. 400–650 (Jackson and Potter 1996, 235, 517, no. 16). Further lava was found at Heslerton, North Yorkshire, at an early Anglo-Saxon settlement associated with a cemetery dated to the 5th, 6th and possibly early 7th centuries (Powlesland et al. 1986, 163).
Even when the use of local quern materials had become established, the lava continued to be imported. Other sites by the Thames with finds of lava for querns and millstones from 7th- and 8th-century contexts, or perhaps from even earlier, include Yarnton and Eynsham Abbey, Oxfordshire (Roe forthcoming b and c).

Two spindle whors, one made from lower chalk with a heavy sub-rectangular cross-section and the other of ?mudstone, were retrieved from SFBs 7 and 3 respectively.

Undated
A small piece of rotary quern came from posthole [1537]. Made of quartz conglomerate, it had been worn down to a thickness of 33 mm. It is unlikely to have come from the Iron-Age occupation, when saddle querns would have been current and May Hill sandstone was the most popular variety of imported quernstone. Quartz conglomerate was very widely used for rotary querns in both Gloucestershire and Oxfordshire during the Roman period, so this quern could conceivably have come from a nearby Roman site. However, the diameter of c. 360 mm is smaller than typical Roman querns, but compares with the greensand quern from context 692, which had a diameter of c. 350 mm. This detail seems to suggest an Anglo-Saxon date, and rotary querns made from Upper Old Red Sandstone have been found elsewhere on Anglo-Saxon sites. For example, a fragment of quartz conglomerate found at Eynsham Abbey came from a context with a date range of A.D. 650–750, but could have been earlier (Roe forthcoming c), while Upper Old Red Sandstone querns were also found in post Roman contexts at West Hill, Uley (Roe 1993, 199).

Catalogue of worked stone
Near spherical hammerstone, 85.5 × 81.5 × 66.0 mm, with one worn, slightly concave surface. Coarse-grained quartzitic sandstone from local river terrace or drift. Pit [811] (766). Period 4.

Pebble, 51 × 50 mm, possibly used as a slingstone. Quartzite, from local river terrace or drift. Pit [1815] (1811). Period 4.

Spindle whorl (Fig. 22, no. 16), roughly made from lower chalk with a heavy sub-rectangular cross-section. Iron Age (cf. Maiden Castle, Laws 1991, 212, fig. 169) or Anglo-Saxon (cf. West Stow, West 1985, 18, fig. 45.2; 26, fig. 91.4; 35, fig. 135.6). Diameter 36 mm, thickness 17 mm. SFB 7 (885). sf32. Period 6.

Spindle whorl, bun-shaped ?mudstone spindle whorl (Fig. 22, no. 17). Anglo-Saxon. Diameter 32 mm, thickness 11 mm. SFB 3 (443). sf20. Period 6.

WORKED FLINT by Graeme Walker
In all 107 worked flints were recovered from the excavation. Identified tools include eight scrapers, two awls and two possible chisel arrowheads. The remainder comprised flakes, blades, and three cores. The majority of the material is undiagnostic, but several scrapers are of distinctive early Bronze-Age type, and one bladelet is Mesolithic. Five flints display secondary retouch following heavy patination of the original discarded piece. The total assemblage has therefore clearly accrued over a long time, although the predominance of flakes (80) over blades (3) suggests that the majority may well belong to the later Neolithic or early Bronze Age.
SLAG by Lynne Keys

Methodology
A total of 1.9 kg of iron slag was recovered. It was scanned visually and categorised on the basis of morphology, density, vesicularity, and colour. Each category within each context was also quantified, and any other data concerning the fragments were recorded. The identification and quantity of slag for each period was examined to look for any particular distinguishing types within periods. It was not possible to look at all contexts in this way, however, as dating was not available for some.

Discussion
The largest category of slag present at Sherborne House (488 gm) was undiagnostic iron slag which could represent either smelting or smithing activity. Given the absence of any slags diagnostic of smelting (such as tap slags, furnace bottoms or raked slags) it probably derived from smithing activity. A very dense slag, of which 60 gm was recovered, had a low porosity and a lathe-like crystalline structure (possibly the result of rapid cooling) and was extremely heavy. It could represent smelting activity, but such slags are also encountered on sites where there is no evidence for smelting but abundant evidence for iron smithing. They may represent some type of high temperature welding or have been formed in an environment which promoted rapid cooling.

The most diagnostic type of slag present was the four complete smithing hearth bottoms (SHB), weighing a total of 754 gm; a fifth was incomplete. Smithing slag lumps (SSL) weighing 40 gm were also identified. Hearth bottoms and slag lumps result from high temperature reactions between the iron, iron-scale, and silica from either a clay furnace lining or the silica flux used by the smith. The predominantly fayalitic (iron silicate) material produced by this reaction dripped down into the hearth base during smithing to form a slag which, if not cleared out, developed into the characteristic plano-convex-shaped SHB in front of and below the tuyère (the hottest part of the hearth) and could eventually impede air flow from the bellows or greatly reduce the area of working. The average weight and measurements of the SHBs were weight 170 gm, length 70 mm, width 50 mm and depth 30 mm. The averages are slightly raised by one Anglo-Saxon hearth bottom (420 gm). This might seem large in relation to the other complete Iron-Age and Anglo-Saxon examples from the site, but it is not unusual for Anglo-Saxon SHBs to attain this size. Also recovered was a small quantity of vitrified hearth lining (177 gm) and cinder (224 gm). The cinder formed at the interface between the alkali fuel ashes, siliceous materials, and usually the lighter portion of vitrified hearth lining.

Although some of the slag from the site could derive from iron smelting or smithing, the absence of any definite evidence for smelting suggests that the bulk of the assemblage probably derives from iron smithing. There was no slag which could be assigned to the Romano-British period. For the Iron-Age and Anglo-Saxon periods evidence for smithing activity is not great and most of the debris for the latter period came from pits and two of the sunken-featured buildings (SFBs 6 and 7). In the absence of sure evidence for smithing having taken place in these buildings, the assumption must be that the slag was disposed of there after the buildings were no longer in use. None of the slag was found in situ and there is no evidence for hammerscale in any of the soil adhering to it. This implies that smithing was either occasional, with the small amount of debris being discarded in features around the site, or that it took place some distance away.
ANIMAL BONE by Mark Maltby

Methodology
A database containing records of all animal bones from Periods 2, 3, 4 and 6 and a more detailed report with supporting tables forms part of the site archive. Counts of fragments — number of individual specimens (NISP) — included any identified limb bone shaft fragments, dorsal ends of ribs and vertebral bodies. Minimum numbers calculations were derived from the most common zone of a bone represented. Tooth eruption and wear descriptions for cattle, sheep/goat and pig followed the method of Grant (1982). Measurements are those recommended by von den Driesch (1976) with a few additions. Withers height calculations were derived from formulae recommended by von den Driesch and Boessneck (1974). Bones from sieved samples are included in the overall counts alongside those recovered by normal excavation.

Sample Sizes
The animal bone samples from late Bronze-Age–middle Iron-Age (Periods 2–3) contexts were too small for detailed analysis. The data are available as part of the site archive. Middle Iron-Age (Period 4) contexts provided 953 fragments, of which over 400, mainly from sieved samples, were unidentified (Table 6). The great majority of these bones were found in pits. A total of 1,891 fragments was recorded from Anglo-Saxon contexts, including 1,475 from six of the SFBs. The largest assemblage was obtained from SFB1 (Table 7).

Table 6. Animal bones from Period 4 deposits.

<p>| Ditch F SW Pits | SW Pits Alignment G Postholes Total Total Total |
|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>N</th>
<th>S</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>S</th>
<th>S</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>3</td>
<td>132</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>142</td>
<td>1</td>
<td>143</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>1</td>
<td>60</td>
<td>7</td>
<td>8</td>
<td>69</td>
<td>7</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>20</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td>4</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>2</td>
<td>54</td>
<td>1</td>
<td>57</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurochs</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodmouse</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-tailed Vole</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodent</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frog</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frog/Toad</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULM</td>
<td>4</td>
<td>113</td>
<td>6</td>
<td>9</td>
<td>126</td>
<td>6</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>USM</td>
<td>2</td>
<td>63</td>
<td>90</td>
<td>5</td>
<td>70</td>
<td>90</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>9</td>
<td>307</td>
<td>316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>458</td>
<td>450</td>
<td>31</td>
<td>2</td>
<td>503</td>
<td>450</td>
<td>953</td>
</tr>
</tbody>
</table>

Key
N = from normal excavation S = from sieved samples
ULM = unidentified large mammal USM = unidentified medium-sized mammal
UM = unidentified mammal UB = unidentified bird
Discussion

Bone preservation

The bones from all periods were generally well preserved with surface erosion only present on a minority of bones. Gnawing damage, typically 25 to 30%, was common in all periods and from all types of deposit, indicating that many of the bones had been accessible to dogs prior to eventual burial. Many more would have been totally destroyed. The prevalence of gnawing was slightly greater in the prehistoric deposits. The percentage of gnawed fragments from the SFBs was comparable with levels from other contemporary features, indicating that many of the bones were secondary depositions.

Species representation

Nearly all the bones from middle Iron-Age contexts were from the pit cluster (bones from the pit alignment are excluded from this discussion because of the possibility of contamination by later material). Cattle (50%) dominated the identified mammal assemblage, followed by sheep/goat (31%) and pig (10%). Horse bones were relatively uncommon (4%), apart from the two associated groups not included in these totals. Dog bones were also rarely recorded, although dogs’ presence is confirmed by the high incidence of gnawed bones. The absence of domestic fowl from middle Iron-Age deposits is typical of British sites (Maltby 1997) and the aurochs bones are almost certainly residual.

Table 7. Animal bones from Period 6 sunken-featured buildings.

(Data from other Anglo-Saxon features are stored in the site archive)

<table>
<thead>
<tr>
<th></th>
<th>SFB1</th>
<th>SFB1</th>
<th>SFB3</th>
<th>SFB3</th>
<th>SFB6</th>
<th>SFB7</th>
<th>SFB8</th>
<th>SFB9</th>
<th>Total</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>88</td>
<td>51</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>35</td>
<td>14</td>
<td>256</td>
<td>10</td>
<td>266</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>44</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>48</td>
<td>37</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>164</td>
<td>13</td>
<td>164</td>
</tr>
<tr>
<td>Pig</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Horse</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Cat</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Short-tailed Vole</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rodent</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Frog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Frog/Toad</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Domestic Fowl</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Goose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Duck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thrush species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ULM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>USM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>408</td>
<td>467</td>
<td>183</td>
<td>4</td>
<td>42</td>
<td>59</td>
<td>243</td>
<td>69</td>
<td>1,004</td>
<td>471</td>
<td>1,475</td>
</tr>
</tbody>
</table>

Key
N = from normal excavation S = from sieved samples
ULM = unidentified large mammal USM = unidentified medium-sized mammal
UM = unidentified mammal UB = unidentified bird

Discussion

Bone preservation

The bones from all periods were generally well preserved with surface erosion only present on a minority of bones. Gnawing damage, typically 25 to 30%, was common in all periods and from all types of deposit, indicating that many of the bones had been accessible to dogs prior to eventual burial. Many more would have been totally destroyed. The prevalence of gnawing was slightly greater in the prehistoric deposits. The percentage of gnawed fragments from the SFBs was comparable with levels from other contemporary features, indicating that many of the bones were secondary depositions.

Species representation

Nearly all the bones from middle Iron-Age contexts were from the pit cluster (bones from the pit alignment are excluded from this discussion because of the possibility of contamination by later material). Cattle (50%) dominated the identified mammal assemblage, followed by sheep/goat (31%) and pig (10%). Horse bones were relatively uncommon (4%), apart from the two associated groups not included in these totals. Dog bones were also rarely recorded, although dogs’ presence is confirmed by the high incidence of gnawed bones. The absence of domestic fowl from middle Iron-Age deposits is typical of British sites (Maltby 1997) and the aurochs bones are almost certainly residual.
Iron-Age assemblages dominated by cattle bones are not unknown in southern England, although sheep/goat remains are usually more common (Hambleton 1999, 58). Closer to Lechlade, sites in the Upper Thames Valley sometimes have more equal percentages of cattle and sheep/goat bones, such as Claydon Pike (ibid. 109) and Watkins Farm, Oxfordshire (Wilson and Allison 1990), and the late Iron-Age/Romano-British sample from Barton Court Farm, Oxfordshire (Wilson 1984). The samples from Ashville (Wilson 1978) and Mingies Ditch (Wilson 1993) both contained substantially higher percentages of sheep/goat. Species representation from this sample has closest similarities to the small sample from Appleford, Oxfordshire (Wilson 1980), although both cattle and pig were slightly better represented there. A consistent feature of all these samples is the low representation of pig, which contrasts with their better representation at some sites from western England (Hambleton 1999, 47). Some Iron-Age assemblages show significant intra-site variability in species representation (Maltby 1996) and it is possible that species proportions in this pit cluster are not typical of disposal practices in other parts of the settlement. However, the high incidence of cattle bones in pit deposits, in which sheep/goat and pig are often well represented, does suggest that cattle were being consumed at this settlement in relatively greater numbers than on many sites in Wessex. This may be a product of the good pasture and water supply in the area.

The Anglo-Saxon deposits produced a broadly similar picture of species representation, although some minor changes can be observed. Cattle bones continued to provide the majority of the identified material, contributing 56% of the mammal assemblage (this result is based mainly on the SFB samples). The percentage of sheep/goat decreased slightly to 34% but pig declined even more markedly, to a lowly 5%. Horse remained at 4%, with dog and red deer each providing less than 1% of the bones. This suggests that the constitution of the meat diet remained largely the same, relying predominantly upon beef, which may have become more common in the Anglo-Saxon phase. The decline in the consumption of pig may reflect that suitable woodland for pannage became less common in the area or more difficult to enter. There is little evidence for the consumption of meat from wild mammals, but bones of poultry occur. Both domestic fowl and goose bones were found in small numbers in the Anglo-Saxon deposits and cranes also appear to have been occasionally exploited.

Anglo-Saxon assemblages, particularly those from rural settlements, display a good deal of variation in species representation. Sheep/goat bones were the most common in the vast sample from West Stow, Suffolk (Crabtree 1990), but cattle were more common in small assemblages from Harrold, Bedfordshire (Maltby unpublished), and Collingbourne Ducis (Hamilton-Dyer 2001). These variations probably reflect local environmental conditions, with areas of good lowland pasture and adequate water supplies being more favourable for cattle farming.

The low percentage of wild species represented in the assemblage is typical of most Anglo-Saxon rural sites (Crabtree 1994). Red deer is solely represented by antler fragments and no identifications of roe deer are made. This contrasts with two sites in Wiltshire, at Ramsbury (Coy 1980) and Collingbourne Ducis (Hamilton-Dyer 2001), where roe deer were not uncommon finds. The absence of fish bones, even in sieved samples, suggests that fish were rarely consumed.

Associated bones
No complete skeletons were recovered and most of the bones represented were the waste from various stages of processing. However, the Period 4 pits produced two partial skeletons of adult horses and one of cattle. Pit [1032] included 29 cattle bones from the complete right hind limb of an adult animal and a set of phalanges of another limb, possibly from the same animal. Nineteen large mammal rib fragments could also have all belonged to this animal. No butchery marks were observed, although three bones had been slightly damaged by gnawing. Pit [914]
included 31 bones from a partial horse skeleton. The right fore limb and hind limb of an adult animal were present. Four bones had slight damage from canine gnawing, again indicating that the associated bones had been accessible to dogs at some stage. The radius and ulna both bore evidence of a healed fracture towards their distal ends. Three of the tarsals had fused together and these and the proximal metatarsal all showed evidence of abnormal extra bone growth on their anterior surfaces. Sixteen bones from another adult horse were found in pit [1836]. In this case most of the bones of the left hind limb were recovered along with the right side of the pelvis and part of the right femur. A complete radius and ulna in an adjacent context could also have belonged to the same horse. Both of these and four of the hind limb bones had been gnawed. The radius also bore a knife cut on the anterior aspect of the proximal end made during segmentation. Such depositions are not uncommon on Iron-Age sites in southern Britain and their significance has been the subject of much discussion (Grant 1984a; Cunliffe 1992; Wilson 1992; Hill 1995). In this instance there is no clear evidence that these were ritual depositions, although no butchery marks were noted. The deposition of partial horse skeletons is much more common than cattle on sites such as Danebury (Grant 1984b; 1991; Cunliffe 1992), partly perhaps because their carcasses were not butchered as commonly for meat.

A partial cat skeleton was found in SFB 1. Again there was no evidence for butchery nor any indication of careful placement of the bones. Similar deposits were found in SFBs at Collingbourne Ducis (Hamilton-Dyer 2001).

Cattle
The Period 4 assemblage of cattle bones provided only limited evidence of mortality rates, but suggests that most cattle reached maturity and were commonly utilised for secondary products such as milk and traction power.

In contrast, most of the 15 cattle mandibles from the Anglo-Saxon features were from immature animals, with only two or three specimens belonging to adult cattle. No mandibles of young calves were found but at least five (33%) died under c. 18 months old and eleven (73%) were under c. 30 months. Immature cattle are generally well represented in Anglo-Saxon samples, for example at West Stow (Crabtree 1990, 69) and Southampton (Bourdillon and Coy 1980), but the very high percentage of immature cattle at Lechlade is almost unprecedented. Indeed, it seems unlikely that these animals can be fully representative of the cattle herds; too few breeding adults are represented to have maintained stock levels. It is possible that the small sample size may be providing a biased result. Using Irish documentary sources, McCormick (1992) has argued that calves may have been kept alive for longer in this period than in modern dairy herds because cows required the presence of their calves to give milk. In this case, the number of animals killed before 18 months of age may represent the cull of male calves for meat in herds that were also exploited for milk. Certainly, immature cattle slaughtered for meat dominate the surviving assemblage of mandibles.

Butchery evidence demonstrates that most of the cattle were butchered with knives in the Iron Age. Cleavers were used more commonly (but not exclusively) in the Anglo-Saxon period.

Withers heights were estimated from seven complete limb bones from prehistoric contexts. These estimates ranged between 1.02 m and 1.14 m, with a mean of 1.06 m, falling within the range of small cattle typical of most Iron-Age assemblages. Two bones of Anglo-Saxon date provided withers height estimates of 1.11 m and 1.12 m, but this limited data does not provide clear evidence for increases in the size of cattle in the Anglo-Saxon period.

Sheep/goat
Of those bones identifiable to species, 47 were sheep and only three goat. A total of 23 sheep/goat mandibles provided tooth-ageing data. The eight from prehistoric contexts included neonatal,
immature, sub-adult and adult specimens. The Anglo-Saxon sample included seven mandibles from lambs probably under a year old, including three under six months old. Only one mandible belonged to a sheep killed in its second year. Six mandibles belonged to animals over two years old, three of which had heavy wear on their first molars and were probably over four years of age. High rates of first-year slaughter, particularly of lambs aged between six and 12 months old were noted at West Stow (Crabtree 1990, 83–95) and Harrold (Maltby unpublished). It has been suggested that these may indicate the culling of excess stock, particularly in the autumn and winter of their first year (Crabtree 1994, 45).

Butchery evidence was extremely limited. Both knives and cleavers were used to butcher carcases in the Anglo-Saxon period, with cleaver marks being identified on fragments of pelvis, two vertebrae and a skull. Knife cuts were found on a few limb bones of both prehistoric and Anglo-Saxon date and saws were sometimes used to remove horns from skulls preparatory to working.

A complete sheep limb bone from the Anglo-Saxon deposits provided a withers height estimate of 57.7 cm. The limited numbers of other measurements possible indicated that quite a wide range in size of sheep was represented in the Anglo-Saxon deposits. Two tibiae measurements were smaller than any recorded at West Stow and a radius belonged to a sheep as large as the largest specimen recorded there (Crabtree 1990, 46). Too few Iron-Age specimens were measured to determine whether the average size of sheep at Lechlade was greater in the Anglo-Saxon period.

Pig
The small numbers of pig bones restricted the information available about their exploitation. Only five mandibles provided tooth eruption evidence and the four from prehistoric features were all from animals probably over two years old. An unfused scapula and proximal radius testify to the presence of pigs that died under a year old but no bones of neonatal pigs were found in any period. Only one mandible from a second-year mortality could be aged in the Anglo-Saxon sample.

Knife cuts were found on a pig mandible from Period 3 and a humerus from Period 6. Only four bones could be measured, all of which fell within the size range of domestic pig rather than wild boar.

Horse
With the exception of the associated bones from Period 4 pits, horse was poorly represented in all periods. Apart from an unworn premolar from Period 3 and a deciduous tooth from Period 6, there is no evidence for immature animals. Both the articulated groups were from adult animals and the crown heights of molars indicated horses that died at about eight and nine years of age in Periods 4 and 6, respectively. All other permanent teeth recovered were worn and also belonged to adults. Horses would have been valuable as beasts of burden and are unlikely to have been culled immature. A complete radius from a Period 4 pit bore knife cuts indicative of butchery but there was no other evidence for carcass processing. Lateral length measurements of the complete limb bones in the associated groups indicated horses that stood about 1.20 m high at the shoulder.

Other species
The adult cat represented in SFB 1 was smaller than any of the cats measured at West Stow, although these were quite large by Anglo-Saxon standards (Crabtree 1990, 67). Dogs were kept at the settlement in all periods and clearly had access to discarded meat and bones. No evidence for butchery was found on any of their bones.
A total of 40 bird bones was identified in the Anglo-Saxon deposits. These included seven bones of a thrush/blackbird skeleton from a sieved sample. The other bones are all likely to have belonged to birds that were eaten, although no butchery marks were observed. Bones of domestic fowl (19) were the most common, as is typical of most Anglo-Saxon avian samples. Measurements were taken on eight bones, all of which fell within the ranges of larger contemporary samples. There was no evidence of medullary bone within the shafts of leg bones indicative of hens in lay (Driver 1982). It is likely that the 11 goose bones from the SFBs all belonged to the domesticated variety rather than the wild greylag. The single duck bone was comparable in size to that of a wild mallard, although it is possible that this too was from a domestic bird.

The appearance of crane bones, albeit in small numbers, is worthy of note. They have now been found on a number of Romano-British, Anglo-Saxon and medieval settlements and probably did not become extinct as a breeding bird in England until c. A.D. 1600 (Boisseau and Yaldon 1988). Specimens dated to the Iron-Age and Romano-British periods have been found in the region, for example at Claydon Pike (Parker 1988) and Silchester, Hampshire (Maltby 1984), but most of the later records are from sites in eastern England or the South West. The Anglo-Saxon settlement at Collingbourne Ducis also produced bones of crane (Hamilton-Dyer 2001). Place-names associated with cranes are commonly found and include examples in Gloucestershire and Oxfordshire (Boisseau and Yaldon 1988).

Conclusion
Although the excavations at Sherborne House produced relatively small samples, the animal bones were in a good state of preservation and it is possible to demonstrate that cattle and, to a lesser extent, sheep provided the bulk of the meat supply in both the Iron-Age and Anglo-Saxon periods. If pigs were kept at all by the inhabitants, they seem to have been only in small numbers and, it is possible that their importance decreased in the Anglo-Saxon period. Horses may have occasionally provided additional meat in both periods with domestic fowls, geese, ducks and cranes being used to supplement the diet in the Anglo-Saxon period. There is no evidence that fish, hare or deer were eaten, although red deer antler was utilised. Horns of sheep, goat and cattle were also prepared for working in the latter period. Dogs were kept at the settlement in both periods and cats in the Anglo-Saxon phase.

Evidence of mortality rates was limited but there are indications that immature cattle were selected for slaughter in the Anglo-Saxon period and that lambs culled in the autumn and winter of their first year were also commonly eaten. It cannot be established what proportion of the animals slaughtered were owned by the inhabitants rather than procured from elsewhere. Some cattle may have been kept for dairy production and the older sheep would have provided wool and perhaps milk.

The samples were generally too small to investigate possible intra-site variations in bone disposal. Species representation was broadly consistent, preservation of the bones was generally similar and there is no evidence that the nature of the deposition of bones in the SFBs was any different to that in ditches and pits.

THE ARABLE ECONOMY by Chris Stevens

Twelve soil samples (each of 30 litres) were examined. The samples had been floated and the float was collected with a 250 µm mesh. They were sorted at the George Pitt-Rivers Laboratory, Cambridge, and the extracted material was identified and quantified using the nomenclature of Stace (1991) (Table 8).

The Iron-Age samples (one from Period 2 and seven from Period 4) were taken from pits and
all produced a large quantity of material with over 200 items present in each sample. The four Anglo-Saxon samples all came from SFB 1. Those from (152) and (242) contained less than 20 items, but the remaining two from (154) and (243) contained over 100 items each.

Table 8. Plant remains.

<table>
<thead>
<tr>
<th>Period</th>
<th>Feature</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>701</td>
<td>780</td>
</tr>
<tr>
<td>4</td>
<td>855</td>
<td>856</td>
</tr>
<tr>
<td>4</td>
<td>865</td>
<td>869</td>
</tr>
<tr>
<td>4</td>
<td>892</td>
<td>894</td>
</tr>
<tr>
<td>4</td>
<td>929</td>
<td>904</td>
</tr>
<tr>
<td>4</td>
<td>902</td>
<td>906</td>
</tr>
<tr>
<td>6</td>
<td>1815</td>
<td>1814</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>152</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>154</td>
</tr>
<tr>
<td>6</td>
<td>242</td>
<td>243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cereals and Other Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordeum sp. (grains, hulled)</td>
</tr>
<tr>
<td>Hordeum sp. (rachis fragments)</td>
</tr>
<tr>
<td>Triticum sp. (grain)</td>
</tr>
<tr>
<td>Triticum dicoccum/spelta (grain)</td>
</tr>
<tr>
<td>Triticum spelta (spikelet)</td>
</tr>
<tr>
<td>Triticum dicoccum/spelta (glume bases)</td>
</tr>
<tr>
<td>Triticum dicoccum/spelta (spikelet forks)</td>
</tr>
<tr>
<td>Triticum aestivum sensu lato (grain)</td>
</tr>
<tr>
<td>Triticum aestivum sensu lato (rachis)</td>
</tr>
<tr>
<td>Cereals undiff. (grains)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranunculus acris, bulbosus, repens</td>
</tr>
<tr>
<td>Papaver rhoesas/dubium</td>
</tr>
<tr>
<td>Urtica sp.</td>
</tr>
<tr>
<td>Chenopodiaceae (undiff.)</td>
</tr>
<tr>
<td>Chenopodium sp.</td>
</tr>
<tr>
<td>Artrlex sp.</td>
</tr>
<tr>
<td>Montia fontana ssp. chondrosperma</td>
</tr>
<tr>
<td>Stellaria media/Cerastium sp.</td>
</tr>
<tr>
<td>Silene alba</td>
</tr>
<tr>
<td>Polygonum aviculare/Persicaria sp.</td>
</tr>
<tr>
<td>Fallopia convolvulus</td>
</tr>
<tr>
<td>Rumex sp.</td>
</tr>
<tr>
<td>Matva sp.</td>
</tr>
<tr>
<td>Aphanes arvensis and Potentilla sp.</td>
</tr>
<tr>
<td>Prunus spinosa</td>
</tr>
<tr>
<td>Vicia/Lathyrus sp.</td>
</tr>
<tr>
<td>Medicago lupulina/Trifolium sp.</td>
</tr>
<tr>
<td>Torilis arvensis/japonica</td>
</tr>
<tr>
<td>Lithospermum arvense</td>
</tr>
<tr>
<td>Lamiaceae (small <2.5 mm)</td>
</tr>
<tr>
<td>Plantago major</td>
</tr>
<tr>
<td>Odontites verna/Euphrasia sp.</td>
</tr>
<tr>
<td>Galium aparine</td>
</tr>
<tr>
<td>Sambucus nigra</td>
</tr>
</tbody>
</table>
Table 8 – continued.

<table>
<thead>
<tr>
<th>Period</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>701</td>
<td>855</td>
<td>865</td>
<td>892</td>
<td>892</td>
<td>902</td>
<td>902</td>
<td>1815</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Context</td>
<td>780</td>
<td>856</td>
<td>869</td>
<td>894</td>
<td>896</td>
<td>904</td>
<td>906</td>
<td>1814</td>
<td>152</td>
<td>154</td>
<td>242</td>
</tr>
</tbody>
</table>

Species Name

- Valerianella dentata
- Asteraceae (<2.5mm)
- Asteraceae (>2.5mm)
- Tripleurospermum inodorum
- Monocot stems and root stems
- Juncus sp.
- Eleocharis palustris
- Carex sp.
- Poaceae/Cereal (culm+basa culm nodes)
- Poaceae small (<2mm)
- Lolium/Festuca sp.
- Poa sp./Phleum sp.
- Arrhenatherum elatius var. bulbosum (tuber)
- Avena sp. (grains)
- Avena sp. (floret)
- Avena sp./Bromus sp.
- Bromus sp.
- Seed head
- Identified miscellaneous seeds (< 2.5 mm)
- Identified miscellaneous seeds (> 2.5 mm)
- Seed indet. <2.5mm
- Seed indet. >2.5 mm

Iron Age

The main crop represented in the samples, by both grains and chaff, was spelt wheat (*Triticum spelta*). Rachis fragments and grains of hulled barley, probably 6-row (*Hordeum vulgare*), were also common forming about a quarter of the cereal remains. Both grains and chaff of free-threshing (*T. aestivum sensu lato*) and emmer wheat (*T. dicoccum*) were present. Their numbers are too low to suggest they were grown as crops in their own right, and were more probably ‘weeds’. No other crop remains were found, although non-cereal crops are rarely charred. While wild foods are subject to the same taphonomic considerations, the finds of elder berries (*Sambucus nigra*) and sloe berries (*Prunus spinosa*) may represent the utilisation of such resources.

A wide variety of weed species was identified in the samples. Many are common arable weeds of Iron-Age fields found on the other sites in the region, such as Mingies Ditch (Jones 1993). The identification of floret bases of oats (*Avena* sp.) suggests that the grains are more probably of the wild type, although one may have possibly been of the cultivated variety.

Seeds of spikerush (*Eleocharis palustris*) were particularly predominant in the samples. This species, along with brinks (*Montia fontana ssp. cbondosperma*), marsh bedstraw (*Galium palustre*) and sedge (*Carex spp.*) is common at other Iron-Age sites in the Thames Valley and is representative of the cultivation of marginal wet, probably flooded, soils (Jones 1978). Seeds of species associated with dry or moist soils, such as black medick (*Medicago lupulina*), corn gromwell (*Lithospermum arvense*) and narrow-fruited corn salad (*Valerianella dentata*) were also common in the samples.
Anglo-Saxon

Identifiable cereal remains were less frequent in the Anglo-Saxon samples. Barley (*Hordeum* sp.) was represented both by grains and rachis fragments. Some free-threshing wheat rachis fragments were identified and it is probable that the unidentified wheat grains are of free-threshing wheats rather than emmer or spelt. Along with these two cereal crops, seeds of flax (*Linum usitatissimum*) and Celtic bean (*Vicia faba* ssp. *minor*) were also recovered. Flax is grown for both its fibre (linen) and oil, and it was probably exploited on the site for one, if not both, products.

Many of the seeds of the wild species were the same as those in the Iron-Age samples, although Chenopodiaceae seeds were poorly represented. The notable difference was the presence of high numbers of seeds of rush, *Juncus* sp., and possibly stems as well.

Cultivation Regimes

Several of the weed seeds indicate that wet, probably periodically flooded, soils were under cultivation. Other weeds are more typical of drier conditions, most probably the better-drained parts of the gravel terraces.

It is probable that both autumn and spring sowing were practiced. Cleavers (*Galium aparine*) have been associated with autumn sowing (Jones 1981) and were present within most of the samples. The proportion of seeds of nitrogen-loving species, orache and goosefoots (Chenopodiaceae), to leguminous species, especially vetches (*Vicia, Lathyrus*), declined during the Iron Age, perhaps as a result of diminishing soil fertility (Jones 1981). It has also been suggested this trend might be associated with a shift from predominantly spring sowing to autumn sowing (Stevens 1996). The two views do not necessarily conflict as declining soil fertility might well lead to a preference for autumn sowing. The Iron-Age samples show a general predominance of seeds of Chenopodiaceae and so are perhaps indicative of good soil fertility and predominately spring sowing.

The Anglo-Saxon period sees some changes. The presence of rush seeds in such high numbers and the decline in species typical of drier conditions, e.g. scentless mayweed (*Tripleurospermum inodorum*), may indicate that fields were becoming increasingly wet during this period. The decline in goosefoots (*Chenopodium* sp.) probably indicates a decline in available soil nitrogen. While such a change could be due to over-cropping or increased flooding, it seems unlikely in this case. Botanical examination of fields at Warren Villas, Bedfordshire, that were subject to flooding were high in seeds of *Juncus* sp. and *Chenopodium* sp. (Robinson 1992). It was suggested in that instance that they were spring sown, so the lack of Chenopodiaceae at Sherborne House may suggest a change to autumn sowing in the Anglo-Saxon period.

The method and height of harvesting can be ascertained through the occurrence of seeds of wild or weed species according to their height or their ability to twine their way around cereal plants (Hillman 1981, 1984). The presence of low growing species, such as clover (*Trifolium* sp.) and greater plantain (*Plantago major*), thus indicates that crops were harvested low down on the culm, about 30 to 50 cms from the ground. In the Iron Age this would almost certainly be by sickle, while in the Anglo-Saxon period it may have been by scythe as well. Campbell (2000) has suggested that the presence of basal culm nodes (cereal roots) and tubers of onion couch (*Arrhenatherum elatius var. bulbosum*) indicate that crops were harvested by uprooting (Campbell 2000). Given the presence of high numbers of weed seeds of non-twining species that would only become harvested with the crop by sickle, it is unlikely that the Lechlade crops were harvested by this method alone. More probably, as cereal plants were pulled for cutting, some inevitably became uprooted, a phenomenon that occurs more readily as sickles become blunt.
Processing
It has been argued that charred remains are related predominantly to the charring of waste from the routine processing of crops as they are taken from storage (Stevens 2003). Hull-ed wheats during the Iron Age appear to have been stored mainly in spikelet form. Crops taken from storage were then parched, pounded, the glumes removed and thrown onto the fire to become charred. The examination of charred assemblages therefore reveals whether they represent stored crops or waste from routine processing. It may also reveal how the crops were stored and the operations carried out immediately after harvest but before the crops were put into storage.

Following the methods laid out by Stevens (2003) the samples were examined to ascertain these factors. In four of the eight Iron-Age samples glumes of hulled wheats outnumbered, or were approximately equal to, the estimated numbers of hulled wheat grains. Given the much greater destruction of glumes compared to grain (Boardman and Jones 1990), it is probable that two of the remaining samples, from pits [902] (904) and [865] (869), also derive from the burning of glume waste. An exceptionally well-preserved deposit of spikelets burnt in situ at Danebury (Jones 1984) suggested that even in these conditions only one glume survived to every two grains preserved.

A further sample, from pit [1815] (1814), contained a higher proportion of barley and tail grains than most. It is possible that all the unidentified cereal grains were in fact barley. Alternatively it is possible that whole spikelets of emmer were removed as waste from the processing of barley.

The Period 2 sample from pit [701] (702) contained seven whole spikelets of spelt in an exceptional state of preservation. This suggests that it had been burnt in situ and does not represent the charring of whole spikelets. Perhaps the most interesting factor of this analysis comes from the comparison of this sample with the others. The others were dominated by smaller weed seeds, including smaller lighter weeds, and contained more stems and straw and grass nodes and a greater proportion of barley rachides to grain. All these items are those removed in the earlier processing stages, during threshing, winnowing, coarse and preliminary fine sieving (Hillman 1981). In common with many other sites from the Thames Valley (see Stevens 2003), the inhabitants of Lechlade appear to have been storing crops in a relatively unclean state, probably as partially threshed ears after the bulk of straw had been removed. This means that after harvest relatively little processing was carried out. As harvesting and mass processing prior to storage consumes both time and labour, it has been suggested that such patterns are more in keeping with smaller households farming on a relatively small scale, where the organisation of large amounts of labour is less feasible. This stands in contrast to sites such as Ashville and Danebury where crops were stored as semi-clean spikelets. The implication here is that both these sites could facilitate the organisation of greater numbers of people during harvest.

During the remainder of the year the Iron-Age inhabitants of Lechlade would have taken ears from store, threshing, winnowing, sieving, parching, and pounding them to remove a variety of waste, culms, rachis fragments, small and light weeds, glumes and finally larger weed seeds by hand. All of these appear to have been thrown into the hearth eventually becoming incorporated into the pits.

The taphonomy of the sample from pit [701] (780) was very different. The crop had been threshed, winnowed and fine-sieved, removing the majority of smaller weed seeds, culms and rachis fragments. All that was left were a few smaller weed seeds and those that were the same size as the grain. The shape and size of the pit was in keeping with those suggested to have functioned for grain storage at other sites in Britain. While storage pits are most common on the chalk lands they are not uncommon on gravel sites. Storage as semi-clean spikelets is probably far more effective in pits than as partially threshed ears, although this method would undoubtedly leave much
larger voids and lead to considerable loss of grain, if not complete failure. The storage of semi-cleaned spikelets in such pits is testified from a number of sites, most notably Danebury (Jones 1984), but also Wandlebury, Cambridgeshire (author’s own observations). This raises some interesting possibilities, such as sites simultaneously practicing two differing forms of storage; semi-cleaned spikelets in pits and partially threshed ears suspended above ground from round-house eaves or four-post structures. The fact that the sample from pit [701] came from a Period 2 context may suggest that different methods of storage were practiced in the late Bronze Age/early Iron Age compared to the middle Iron Age at Lechlade. Alternatively it is possible that such storage served a different purpose, perhaps as seed-corn, for the following spring.

The Anglo-Saxon samples, containing as they do high amounts of small weed seeds, stems and a reasonable number of free-threshing rachis fragments, indicate that they too were stored largely unprocessed. This in turn points perhaps to the organisation of farming activities on a relatively small scale. This stands in contrast to the transition observed between the prehistoric and Anglo-Saxon periods at Yarnton where it was demonstrated that the processing waste from crops was stored in a relatively clean condition in the Anglo-Saxon period (although occasional samples did indicate the burning of waste from the processing of sheaves).

MOLLUSCS by Keith Wilkinson

This report summarises the mollusc evidence from Iron-Age and Anglo-Saxon deposits. A full report can be found in the archive.

Iron Age

Mollusc shells were recovered in small numbers from most of the Iron-Age pit fill samples. Mollusc assemblages from pits are rarely studied because of problems in understanding shell derivation and taphonomy, and because the environment reconstructed from such remains can only be representative of a very small area around the pit (Evans 1972). Nonetheless, occasionally useful data can be obtained to enhance interpretations of charred plant remains.

The mollusc shells from the Iron-Age pits are almost all from species such as *Pupilla muscorum*, *Vallonia* sp., and *Helicella itala* indicative of open environments. Only occasionally are species of more catholic preferences encountered, including *Trichia* sp. and *Cochlicopa* sp. These data, coupled with the almost complete absence of shade-loving species (only a single shell of the Zonitidae family and a single shell of the genus *Carychium* were found in the samples), are significant. If the pits had remained open for any length of time, shade-loving species would have rapidly colonised the dark microenvironment and therefore been found in the samples. Thus it is likely that the pits were deliberately filled for any length of time, shade-loving species would have rapidly colonised the dark microenvironment and therefore been found in the samples. Thus it is likely that the pits were deliberately filled in a single or short series of operations and did not stand open for any length of time. Interestingly a single mollusc shell in a sample from pit [1815] (1814) is burnt, suggesting either that it was transported along with the charred plant remains and redeposited or that burning took place in situ.

Anglo-Saxon

Mollusc shells were found in moderate numbers in the Anglo-Saxon contexts. The assemblages are almost identical to their Iron-Age predecessors, again indicating that sampled features were rapidly filled following their abandonment. The data from the primary fills of the SFBs do not support the assertion that these fills represent material falling through floorboards, as the assemblages are dominated by open country mollusc species and do not contain a single shade-dwelling individual as would be expected in dark microenvironments below floorboards.
Micromorphological analysis was carried out on the fills of two Anglo-Saxon sunken-featured buildings (SFBs 1 and 7) to determine the origin and mode of accumulation of the fills, suggest how soon after abandonment the infilling deposits began to accumulate, and comment on activities carried out in the SFBs. Two oriented columns, 0.20 m long, were sunk through the tertiary fill into the basal (primary) fill in each SFB. Each column was air-dried, impregnated with a polyester resin and two thin sections manufactured to provide a continuous sequence of the contexts. The thin sections were analysed in three stages:

1 (without magnification) to determine structural properties and the nature of the boundaries between contexts.

2 (×5.8 to ×400 magnification) to determine the nature and distribution of the basic components (mineral and organic) of the fill fabrics together with features indicating the types of soil processes that have been active. The data were semi-quantified by comparison with frequency charts (Bullock et al. 1985).

3 (×100 magnification within 10-mm deep ‘spits’) to determine the frequency of anthropogenic (bone, pottery, burnt stone, charcoal) material and quantify the data. Full results of these analyses are available in Heathcote (2001).

In both SFBs clearly stratified fills were recorded from the field sections; SFB 1 contained a tripartite fill and SFB 7 a bipartite fill. When viewed in thin section, however, this clear stratification was lost and the samples appeared largely homogeneous with a high porosity and granular soil structure indicating that the material has been subjected to a high level of biological activity, primarily by earthworms (Bergadà 1993). Further evidence for bioturbation was the presence of calcitic earthworm granules (Canti 1998) and roots. Clear differentiation of primary, secondary and tertiary fills was not possible and the position of the contexts had to be extrapolated from the section drawings to facilitate analysis.

The fills of SFB 1 and SFB 7, regardless of stratigraphic position, were all silty clays with a generally uniform mineral suite, low (c. 7%) organic matter content, and a low incidence of anthropogenic material, primarily bone with rare fragments of pottery and burnt stone. The presence of vivianite in the mineral suite was unexpected as its formation is associated with sediments having a high organic and high phosphorus content and being at least periodically waterlogged (Fitzpatrick 1993). The shape, size and distribution of the vivianite grains coupled with the absence of any indication of waterlogging or fluctuating groundwater suggest that they do not represent in situ formation. Sampling of the natural gravels or surrounding soils would be necessary to determine whether the grains are detrital or originate in association with anthropogenic activity.

There was no evidence to suggest that the primary fills resulted from in-situ accumulation contemporary with occupation of the structures, whether by falling through floorboards (see West 1969, 1985; Powlesland 1998) or otherwise. The fills contain fragments of calcareous soil and textural pedofeatures, both of which are inherited from episodes of soil formation prior to deposition of the material within the SFBs. The most likely mode of deposition is through backfilling of the hollow with soil from the surrounding area in which small amounts of anthropogenic material were present. The stratification identified in the field is probably due to slight differences in the degree of staining of the groundmass by humified organic matter, a difference that is too subtle to detect in thin section and that is better observed from bulk soil material.

From thin-section analysis alone, it is difficult to determine how soon after abandonment of
the structure the deposits began to accumulate. Long-term weathering might be expected to produce evidence of slumping into the hollows, but as this was not present it suggests that filling began soon after abandonment.

Finally, as all the fills (including the primary) appear to be re-deposited soil material, the question of what activities the deposits signified cannot be addressed. An observation recorded by Hamerow (1993, 14) in relation to some of the SFB fills at Mucking, Essex, applies equally to the Lechlade fills: ‘at best, they may reflect activity which took place in the vicinity of the hut.’.

DISCUSSION

All conclusions drawn from the results of the excavations must be tempered by recognition of the spatial limitations of the excavation. In no period can it be confidently asserted that the whole or a significant proportion of the settlement has been examined, and interpretation of the relationship of the remains with the immediate vicinity can be based only on evidence found on the site itself. Unlike other recent archaeological excavations on the Upper Thames gravels, that at Sherborne House was relatively restricted in area. Also, the very limited stratigraphic evidence, accompanied by a paucity of diagnostic pottery, has resulted in difficulty in refining the chronology of activity beyond the definition of six broad, period-based developments. The contemporaneity and duration of different activities and structures on the site remain impossible to delineate.

However, despite these significant caveats, the Sherborne House site is of great importance for revealing multi-period activity in both prehistoric and Anglo-Saxon times, the latter proving particularly interesting not only for comparison with the contemporary cemetery at nearby Butler’s Field, but also because it fills a current lacuna in the excavated record of Gloucestershire. The site also makes a major contribution to knowledge of past activity in the upper reaches of the Thames, particularly when studied in relation to the burgeoning archaeological investigations in the Lechlade area in the closing decades of the 20th century.

Period 1: Neolithic/Bronze Age

Little evidence was recovered to indicate settlement or intense activity on site before the late Bronze Age. However, the slight remains may be associated with nearby Neolithic activity at The Loders, Gassons Road and Roughground Farm. The rarity of early Bronze-Age evidence at this site is noteworthy, given that ring-ditches were present close by at Butler’s Field (Boyle et al. 1998, 9–13) and burials at the Memorial Hall (Thomas and Holbrook 1998, 282).

Period 2: Late Bronze Age/Early Iron Age

The analysis of the prehistoric pottery suggests that late Bronze-Age/early Iron-Age settlement was established in the 7th to 6th centuries B.C. Broadly contemporary occupation has been identified within the immediate vicinity at Butler’s Field (Boyle et al. 1998, 27–8), within the Neolithic cursus (ibid. 5), at The Loders (Darvill et al. 1986, 36–43) and at Roughground Farm (Allen et al. 1993, 35, 46–7). The character of these settlements, as for the Upper Thames Valley as a whole, remains undetermined, while continuity of occupation into the later prehistoric periods (Periods 3 and 4) remains unproven.
It is probable that only a small proportion of the settlement was revealed and it cannot be
determined whether the Sherborne House remains occupied a central or peripheral location. The
nature of the exposed remains is dispersed and non-intensive. Stratigraphic evidence showed that
the three roundhouses (4, 11 and 12) could not have all been in use at the same time and differences in construction technique (or, possibly, survival) argue either that they were not contem-
porary or that they had different functions. Attempts to determine function were frustrated by
the absence of internal features such as floor surfaces and hearths.

The post-ring construction of structure 12 is the most commonly identified building technique
on late Bronze-Age/early Iron-Age sites in the Upper Thames Valley (Allen et al. 1984, 91, 100).
In its construction and postulated ENE entrance the roundhouse mirrors the similarly dated
building identified at Butler’s Field (Boyle et al. 1998, 27–8). Structures 4 and 11 survived as ring-
gullies and were slightly superimposed; the stratigraphic relationship could not be determined.
The west-facing entrance of structure 11 is unusual but by no means unique. There is growing
evidence of a small but significant number of roundhouses with west-facing doors (Oswald 1997)
including Groundwell West, Wiltshire (Walker et al. 2000). A ritual significance has been postu-
lated for this trait.

Bone and antler working is represented by superficial saw marks on a number of bones and by
the decorated antler toggle retrieved from ditch A. The function of this object remains undeter-
dined, although such toggles have previously been excavated at Barton Court Farm (Miles 1984,
29) and Danebury (Cunliffe and Poole 1991, 358–9). Limited ecofactual evidence was recovered
with no convincing support, or indeed refutation, of the theory that stock raising was the pre-
dominant agricultural regime around Lechlade (Yates 1999, 163). Large quantities of charred
hulled wheat grains, particularly spelt wheat, from pit [701] seem to represent on-site storage of
processed grain, but there was no evidence to determine whether this had been cultivated and
processed locally or had been obtained in processed form from elsewhere.

Period 3: Early Iron Age/Middle Iron Age

Because of their similar construction techniques, it is tempting to suggest that structures 5 and
10 are broadly contemporary. However, it should be noted that the penannular drainage gully
is a common feature of buildings of this period, particularly in the middle Iron Age. The south-east
facing entrance to both buildings is also typical of the Upper Thames Valley (Hingley and Miles
1984, 63) and contrasts with the variety of entrance alignments seen in Period 2.

The establishment of boundary ditch E can be seen as representing a significant change in land
organisation within the site. In alignment it correlates closely with linear cropmarks identified
within the parkland immediately north-east of the site and, more specifically, with ditches found
at Butler’s Field, Roughground Farm and The Memorial Hall (Boyle et al. 1998, 30). It has been
suggested that these ditches form part of a long-lived early Iron-Age coaxial field system demar-
cating approximately 250 hectares of land defined by the confluence of the rivers Thames and
Leach (ibid. 31–4). The Sherborne House ditch alignment represents an intermediate division between those already identified, but its inclusion in the system is supported by evidence for the maintenance of the boundary over time. The continuity of the boundaries within the system was exemplified at Butler's Field by the identification of a succession of eight linear boundaries within a narrow corridor, and the recutting of ditch E in Period 4 (ditch F) reflects this continuity. No evidence for an upcast bank associated with the ditch was identified, but the 4-m gap between the ditch and structure 5 may suggest the presence of a bank or some other form of barrier such as a hedge.

Period 4: Middle Iron Age

The absence of settlement structures within Period 4 indicates a possible migration of the settlement focus, but evidence for settlement contemporary with the linear alignments at Butler's Field was also extremely limited (ibid. 27–8). Associated settlement may have taken the form of dispersed, shifting farming establishments or a major focus may await discovery. However, the dense scatter of large subcircular pits at Sherborne House is indicative of contemporary settlement within the immediate vicinity. Such activity may be viewed as typical of the second gravel terrace of the Upper Thames Valley where settlements such as Ashville and Gravelly Guy are predominantly open in plan, often cover several hectares, and display areas of distinct zoning, with the settlement and pit storage areas kept quite separate (Hingley and Miles 1984; Cunliffe 1991, 231). Within the limits of the excavation area, it is notable that the extent of the pit cluster at Sherborne House is defined by ditch F and alignment G, with an entrance into the zone through ditch F. Alignments of pits of similar dimensions to those in alignment G were recorded at Butler's Field (Boyle et al. 1998, 16–18).

Evidence from the earlier evaluation (Fig. 2, Trench 2) indicates that the area of intense pitting continues for at least 20 m beyond the south-western limit of the present site. The paucity of artefactual evidence from the fills of the pits argues against a specialised function of rubbish disposal, and the size and profile of at least some of them suggest that the pits may have been excavated to store grain. It has been postulated that sites with such a considerable grain storage capacity may have performed a centralised storage and distribution function (Cunliffe 1991, 231), but the lack of chronological indicators prevents resolution of questions concerning the contemporaneity of the pits. It is not known, therefore, whether the pits were originally excavated in a short but intensive period of activity indicative of the need to store large quantities of grain, or over a prolonged period, suggestive of small amounts being stored during the lifespan of any associated settlement. The pits exhibited few signs of weathering or erosion, suggesting rapid and deliberate infilling, a view supported by the homogeneous nature of the majority of pit fills and the mollusc shells retrieved from the pits.

The deposition of a semi-articulated horse leg and pelvis from the respective primary fills of pits [914] and [1836] is paralleled at many contemporary sites throughout southern Britain. It may have served a ritual function (see Maltby, above). It remains unproven whether the dog skull retrieved from the upper fill of pit [185] is of similar significance or, as with the Dobunnic coin in pit [450], is representative of subsoil slumping into the pit.

Somewhat ironically given the lack of structures, evidence of cultural and economic activity is more prevalent within this period. Cattle formed a high proportion of the identified animal bone which is unusual for contemporary Upper Thames Valley deposits. Although potentially forming a large component of the meat provision of the settlement, it is apparent that most of the cattle bone derives from mature animals which also may have provided milk or traction for ploughs. The limited assemblage of sheep/goat bones capable of ageing comes from a wide age range and
suggests culling for meat, but the fragment of triangular loomweight indicates that weaving also took place locally. Pig formed a small component of the diet and there is little evidence of carcass processing from the recovered horse bones. There is little to indicate exploitation of wild species for food, but the slingshot recovered may have been used for hunting (Cunliffe 1991).

Crop processing took place on site with grain dominated by hulled wheat. The identification of many weed species serves to identify the range of habitats close to the crop producing areas. There is evidence of arable production taking place both on the floodplain and the drier gravel terraces, while the presence of perennial and nitrogen-loving species may indicate cultivation of land that had previously been used for grazing. Insufficient evidence is available to determine whether this information represents a change of emphasis in the agricultural regime of the region from stock to arable or shows a form of rotation.

Trading links are difficult to identify, although the retrieval of fragments of Droitwich brique-tage is not surprising considering the location of the site near the junction of the Salt Ways and the Thames. The ceramic assemblage indicates that occupation in the vicinity of the site ceased in the 3rd to 2nd century B.C. The transition from the middle to late Iron Age has been identified as a time at when abandonment of a settlement in favour of another area nearby was common in the Upper Thames Valley (Lambrick 1992, 83).

Period 5: Late Iron Age and Romano-British

A cropmark c. 250 m north-west of the site has, on the basis of morphology, been interpreted as an enclosure of Iron-Age or Romano-British date (Boyle et al. 1998, 3–5); associated boundary ditches were found in excavation at Butler’s Field (ibid. 19–20) and Gassons Road (King 1998, 275). The absence of features and the rarity of artefacts from this period at Sherborne House suggest that any contemporary activity here is likely to have been agricultural in nature.

Period 6: Anglo-Saxon

Several settlements of this period have been investigated in the Upper Thames region in the latter half of the 20th century. Although a limited area, the typicality of the Sherborne House site can be evaluated by enumerating the salient features of one of the more completely excavated examples; New Wintles, Eynsham, Oxfordshire. At the latter there were Bronze-Age and Iron-Age settlements located on gravels, but no evidence of a Romano-British settlement. The Anglo-Saxon activity dated from the 6th to the late 7th/early 8th centuries, but abandonment had taken place before settlement nucleation. Formed of a widely spaced scatter of SFBs and PBSs, no chronology could be established, nor could separate elements within the settlement be defined. No hearths were found in the SFBs, entrances to them were rare and all seem to have been back-filled deliberately with dumped material. Many isolated postholes and pits were uncovered which did not constitute complete structures and most of the meat eaten was beef, with evidence of sheep having been kept into maturity for their wool (Gray 1974, 51–5). The site at Sherborne House shares all these characteristics, but differs most importantly in its proximity to the contemporary cemetery at Butler’s Field. It is of additional regional significance as previously only one early Anglo-Saxon house had been excavated within Gloucestershire (Dunning 1932).

While underlining the importance of the site, it is also necessary to emphasise its limitations. The nearby cemetery yielded 219 inhumations and 29 cremations, and grave goods suggest that it was in use from the mid 5th to the late 7th or early 8th century. Two main phases have been identified on the basis of the grave goods and orientation, but publication of the population structure and size is awaited (Boyle et al. 1998) and correlation between the sizes of cemetery and set-
tlement is not yet possible. Although close to the Butler’s Field cemetery, there is sufficient space between the two sites for a large and intensive settlement, even allowing for the absence of Anglo-Saxon settlement at the intervening Gassons Road site (King 1998). In these circumstances it is difficult to judge whether the structures at Sherborne House are central to a settlement, on its periphery, or represent phases of a gradually shifting focus. The way in which the SFBs were all used as receptacles for domestic refuse is a strong argument for continuing settlement in close vicinity. It has only been through large area excavation and analysis of chronologically diagnostic finds that sequences of large-scale settlement shift have been identified at sites such as Mucking, Essex (Hamerow 1993, 86). Studies of this type at Lechlade require more excavation in the future. The following should be regarded as a contribution to ongoing debate on Anglo-Saxon settlement in the Upper Thames.

The progress of the expansion eastwards into British territory of English-governed communities has largely been based on cemetery evidence. The Lechlade settlement can be seen as part of a push from the Leach/Thames confluence into the Cirencester region. This probably culminated in the absorption of the area around Cirencester and Lechlade into the territory of the Hwicce after a battle of A.D. 628 mentioned in the Anglo-Saxon Chronicle (Blair 1994, 14, 42). Locally, the earlier settlements are characterised by their formless and haphazard layout and their tendency to sprawl across large tracts of second terrace gravel, typified further east in Oxfordshire at the Thames/Evenlode confluence and around Eynsham and Cassington (ibid. 18). In these characteristics they are markedly different from later nucleated villages, but understanding the evolution through the 8th and 9th centuries into more organised and intensive settlements with accompanying field systems is complicated by lack of knowledge of the contemporary pottery.

Attempts have been made to categorise Anglo-Saxon settlements, notably by Welch. Those defined categories closest in character to Sherborne House include single farm units which constantly shift, small hamlets of four to eight contemporary adjacent farm units, and larger, poorly understood settlements (Welch 1985, 15). Mucking was included in the last category, although it has subsequently been identified as under constant shift, probably partly for agricultural reasons (Hamerow 1993, 86).

Even if the broad phasing of Period 6 delineated above is accepted, determining the relationship and contemporaneity of individual buildings, or identifying the number of putative settlement units in occupation at the same time, is fraught with uncertainty. It may be notable that, with the exception of SFB 6 (which measured 3.7 by 2.2 m), all of the SFBs were of broadly similar dimensions, ranging from 4.3 to 5.2 m in length and from 3.0 to 3.2 m in width. It has been suggested above, by analogy with sequences at Mucking and elsewhere, that while SFB 6 might date to the 5th or 6th century, the longer lengths of the other SFBs would be more consistent with a 7th-century date. Greater variation in the depth of the structures was apparent, but this may be due to varying degrees of subsequent truncation or to subsoil conditions at the time of excavation. Different construction techniques were evident amongst the SFBs and there was also evidence of rebuilding or reinforcement of existing structures. Modifications to the two-post setting on the long axis were noted in both SFB 1, where three stakeholes were identified along the western edge of the structure, and SFB 7, where additional postholes were identified in the corners of the hollow. It remains unclear whether the ramp within SFB 3 is an integral feature of the original structure, perhaps providing access to the sunken area as has been suggested for similar examples (Rahtz 1976, 73), or whether it indicates recutting and enlargement, as noted at West Heslerton (Powlesland 1998, fig. 3.15). There is also uncertainty as to whether the postholes noted within the sunken areas of SFB 1 and 3 are contemporary with the original construction, or represent repair, presumably to support the ridge pole. More convincing evidence of repair is evident in the replacement of the posts at both gable ends within SFBs 3 and 8. Two postholes
noted 0.2 m beyond the sunken element of SFB 3, on the same alignment as the original gable posthole, may represent further repairs to this structure. No evidence of floor surfaces, hearths, or wicker/wooden linings, indicative that the sunken area had been utilised, were identified in any of the structures. However, it is worth noting that evidence that the structures had incorporated supported floors was equally elusive.

The tripartite sequence of fills noted within SFBs 1, 3 and 7, and possibly in a truncated form within SFBs 6 and 9, has previously been identified at Mucking (Jones and Jones 1974, 24) and at West Heslerton (Powlesland 1998, 3.6.2.5). Previous interpretation of this sequence has suggested that it resulted from the decay or dismantling of the superstructure, the sequence being representative of an in-situ occupation layer overlaid first by the collapsed roof and second by the walls (Jones and Jones 1974, 24). However, soil micromorphological analysis undertaken within SFBs 1 and 7 suggests that the respective fills consist of redeposited material, primarily domestic and craft/industrial refuse. Similar conclusions have been drawn at West Heslerton (Powlesland 1998, 3.6.2.5). The lack of weathering or erosion to the SFB hollows suggests that the pits were rapidly infilled, possibly in a single episode, soon after the structure became redundant. Consequently the artefacts retrieved from the structures cannot be directly related to activity undertaken within the building, but must be viewed as a reflection of activities undertaken within the settlement as a whole.

Both in the Upper Thames Valley in Oxfordshire, i.e. Barton Court Farm (Miles 1984), New Wintles (Gray 1974, fig.6) and Abingdon (Keevil 1992), and nationally, i.e. Abbots Worthy, Hampshire (Fasham and Whinney 1991, 76), Hurst Park, Surrey (Andrews 1996, 70), and Harmondsworth, Middlesex (ibid. 21), the long axes of SFBs are aligned broadly E–W. However, the dominant orientation of the Sherborne House SFBs was N–S, with four of the buildings so aligned. While such findings are by no means unique, they are unusual.

The three PBSs were of broadly comparable size, from 8.2 to 9.0 m in length and from 5.8 to 6.0 m in breadth. While this is within the range of known dimensions for early Anglo-Saxon timber buildings in England (Powlesland 1998, fig. 3.6), the interpretation of the structures as roofed buildings remains equivocable. The post settings were regularly spaced, and with the exception of the replacement postholes in PBS 13, were generally shallow, rarely penetrating the natural substrate by more than 0.25 m. No evidence of internal hearths or floor surfaces was identified within the ground plan of the structures.

If only the excavated cultural and economic evidence from the Sherborne House site was taken into account it would suggest that the inhabitants of the Anglo-Saxon settlement lived at subsistence level, primarily utilising local resources, with little involvement in active trade. No items of personal adornment were recovered, the composite bone comb (Fig. 22, no. 12) being the only domestic item identified (the knives having a variety of potential functions). The only clearly imported items were chalk and mudstone spindle whorls and fragments of Niedermendig lava from the Rhineland. It is conceivable that these objects could have been collected and curated from nearby Roman settlements such as Roughground Farm or Claydon Pike, in much the same manner as the Romano-British coin identified within SFB 3 and the 3rd- to 4th-century bone pin (Fig. 22, no. 11) retrieved in association with Anglo-Saxon loomweights from posthole [357]. Such evidence contrasts markedly with the wealth exhibited by the grave goods from the nearby cemetery, however, where exotic materials such as cowrie shells, ivory, and amber beads were noted, indicating a populace with access to long-distance trading networks (Boyle et al. 1998). It is also interesting to note domestic and craft utensils, such as bucket fittings and latch lifters as well as carpentry tools such as spokeshaves, amongst the grave goods when they were not evident within the artefactual record from the settlement. It may also be presumed that the raw materials for such metal working and indeed for the jewellery (if not many of the items themselves) were
also imported to the site. Although it remains unproven, it is highly plausible that the Thames provided the means of communication for the traffic in luxury goods and raw material to, and presumably in goods exported from, the settlement.

Cultural evidence from the Anglo-Saxon period is more prolific than for the prehistoric periods. This is due in part to the density of the Anglo-Saxon settlement and undoubtedly to the use of redundant SFB hollows for the disposal of domestic and craft/industrial refuse. However, the redeposited nature of the evidence for both the craft and industrial activity means that specialist working areas cannot be defined on the site. Textile production is attested by annular loomweights and spindle whorls. However, the faunal evidence does not suggest that wool production was of overriding importance and it may be better viewed as a craft/subsistence activity. The clay loomweights were doubtless of local origin, and their frequent discard is probably illustrative of both their fragility and the ease of manufacture from locally available clay. The three spindle whorls recovered were more durable in nature being manufactured either from stone or from the pierced base of a Roman ceramic vessel. No clay spindle whorls were recovered, although the two examples from inhumations 66/1 and 107/1 at the Butler’s Field cemetery (Boyle et al. 1998, 83, 102) suggests they were used, and indeed may be represented in the 120 fragments of undiagnostic fired clay recovered during the excavation.

Evidence of smithing, including slag, vitrified hearth linings and hearth bottoms, was recovered from a number of Anglo-Saxon features, in particular from the southern terminus of ditch T, ditch U, pit [858], and from SFBs 1, 6 and 7. It is noteworthy that the smithing waste within ditches T and U was found in conjunction with moderate quantities of small ferrous strips and sheet fragments, perhaps suggesting that recycling as well as primary smithing was being undertaken on the site. Bone and antler working was evident in the early Anglo-Saxon composite comb, pins, rings and needles, but need not have taken place on the site.

The evidence for the agricultural regimes and range of habitats exploited in the early Anglo-Saxon period is restricted, as elsewhere, to items obtained from the site itself (Hooke 1985, 27). It is impossible to say whether the evidence, largely derived from the backfills of the SFBs, is typical of the whole settlement or of all phases of its existence. Identifiable animal bones indicate that cattle continued to provide the largest constituent of the meat consumed on site and that the proportion of sheep fell slightly from the Iron Age. The predominance of cattle probably reflects favourable local environments, such as well-watered pasture. Most of the cattle were either immature or young adults, probably deliberately culled for meat, as were the sheep. Pig formed only 5% of the assemblage, suggesting either a lack of woodland suitable for pannage or that such land was not freely accessible to the inhabitants of the Sherborne House settlement. Domestic fowl and crane were also exploited for meat.

The limited plant remains show a move away from hulled wheat towards barley. Also there is indication of only minimal processing before crop storage and another major change from the Iron Age is a move from spring to autumn sowing. Seeds of flax and a single seed of field bean may demonstrate other crops. Fewer seeds from drier soils were evident in the Anglo-Saxon samples and the high incidence of rush seeds could indicate an increasingly wet environment or greater exploitation of wetter areas. Alternatively it may reflect a greater use of rushes as, for example, thatch or floor covering. However, wetter local conditions may tie in with the interpretation of the clustering of Anglo-Saxon settlements along the second terrace gravels of the Upper Thames valley as evidence that the first terrace had become uninhabitable (Berisford 1973, 32–4; Dickinson 1979, 12–14; Hamerow 1992, 42–3). This apparent retreat has been traced to the late Roman period (Miles and Palmer 1982). That said, broadly contemporary Anglo-Saxon deposits and associated pottery have been identified on the first terrace at Latton, 13 km to the west (Bateman 1997a and b; Mudd et al. 1999, 297). Nevertheless, at Sherborne House it is probable
that permanent agricultural systems could only be implemented on the higher and drier second
terrace gravels, possibly using the fields of the former Romano-British villa at Roughground
Farm. Pastoral activity could have been undertaken on the floodplain, in much the same fashion
as has been previously identified at nearby Claydon Pike in the Iron-Age and Roman periods.
Little evidence was recovered to indicate the exploitation of natural food resources. The complete
absence of fish bones is somewhat surprising given the close proximity of the River Thames and
particularly the documented evidence of a fishery at Lechlade in the Domesday Survey (Morris
1978, 169).

The evidence currently available from both the settlement at Sherborne House and the ceme-
tery does not provide an explanation for the apparent cessation of occupation at this location in
the early 8th century. The cemetery continued in use for at least 50 years after the establishment
of a bishopric at Dorchester-on-Thames and there is limited evidence of Christians being
amongst the interred (Boyle et al. 1998, 41). However, the establishment of Christianity in the
region may have given rise to a desire to be buried in a newly-established ground separate from
their pagan predecessors. How or if such a choice related to a movement in settlement is impos-
sible to determine, not least because little evidence for settlement at Lechlade between the early
8th and mid 11th centuries has come to light. A few sherds of late Saxon pottery have been recov-
ered from pit and ditch fills at Butler’s Court, c. 500 m to the west of Sherborne House (Bateman
1998), and excavation at Kent Place, c. 100 m to the south-east of Sherborne House, found a
ditched boundary that was established in the mid–late Anglo-Saxon period and was maintained
throughout the earlier medieval period (Kenyon and Collard forthcoming).

Reorganisation of settlement distribution and structure is a recognised phenomenon of the late
7th/early 8th century in the Thames Valley (Hamerow 1999, 30). Sometimes the planned settle-
ments coalesce around apparent high-status, hall-like buildings which have been interpreted as
the bases of locally influential landowners taking part in the power struggles that ultimately
resulted in the establishment of more powerful kingdoms, such as Mercia and Wessex (ibid.
31–2). Situated at a location on the contested border of these two polities, a settlement at
Lechlade would have been in a position both to exercise great influence and be under threat, but
the nature of its role awaits discovery of its location. The suspicion must be that evidence for later
Saxon Lechlade may lie in an area that has not been subject to archaeological investigation. A
prime candidate is the area that became the medieval focus of settlement centred on the parish
church and market place.

Acknowledgements

The evaluation was supervised by Alistair Barber, managed by Graeme Walker and funded by
Admiral Homes via their agent Charlotte Pink of John Alison Chartered Surveyors. The excava-
tion in 1997 was managed by Dawn Enright and directed in the field by Clifford Bateman,
assisted by Laurent Coleman. Bryant Homes commissioned and funded the excavation and pub-
lication of the site. In particular we would like to thank Graham Holland and Ian Smith for their
willing support of this project. The work was monitored by Charles Parry of Gloucestershire
County Council whose interest and support is acknowledged. Thanks are due to all the partici-
pants in the excavation. The post-excavation process was managed successively by Dawn Enright,
Niall Oakey and Neil Holbrook. Mr. Holbrook prepared the text for publication. We are grate-
ful to all the contributors who have assisted in the preparation of this report and to Professor Tim
Darvill, Bruce Eagles, Helena Hamerow, Carolyn Heighway, Neil Holbrook and the editor for
reading earlier drafts of this report and providing many useful comments. Jane Timby wishes to
record her gratitude to Dr. E. Morris for confirming the identification of the briquetage. The
illustrations are by Peter Moore and the conservation undertaken by Vanessa Fell of English Heritage. The archive will be deposited at the Corinium Museum, Cirencester.

Bibliography

Allen, T.G., 1990. *An Iron Age and Romano-British enclosed settlement at Watkins Farm, Northmoor, Oxfordshire* (Thames Valley Landscapes: The Windrush Valley 1, Oxford University Committee for Archaeol.);

Wymer, J.J., 1968. Lower Palaeolithic Archaeology in Britain, as represented by the Thames Valley (London).